《Science | 小鼠海马单个神经元的全脑投射规律》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-02-03
  • 2024年2月2日,中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)和华中科技大学苏州脑空间信息研究院的研究人员在 Science 期刊发表了题为Whole-brain spatial organization of hippocampal single-neuron projectomes 的研究论文。该研究解析了海马神经元的空间联接规律,并建立了小鼠海马脑区单神经元的全脑介观投射联接图谱的数据库。

    研究人员三维重构了上万个小鼠海马区单神经元的全脑投射轴突形态。这些海马神经元的胞体覆盖了海马的各个亚区和海马多维轴向的不同位置,是目前世界上最大的单神经元全脑投射图谱数据集。通过海马单细胞投射图谱的数据库构建与分析,研究团队开创性地将轴突投射路径与机器识别算法相结合,阐述了海马神经元前后轴的轴突投射路径,为研究海马投射下游脑区之间的关系提供了新的视角,同时更加有效快捷地分析了小鼠海马神经元的341种主要投射模式的形态相似性,最终归纳总结出43种全脑投射细胞类型。

    该研究将投射细胞类型与空间转录组数据进行联合分析,鉴定了与不同投射细胞类型空间分布相关的基因,揭示了全新的海马神经元投射模式以及海马体内外靶区的协调投射规律,阐明了双侧大脑投射的新规律,扩展了领域内的层状理论,全面展示了胞体与轴突末梢的空间映射关系,解析了海马神经元胞体位置与投射模式的对应关系,发现了海马单细胞的空间投射规律。

    这些研究成果为研究海马神经元相关的功能和疾病提供了环路和分子基因的靶点,为左右脑半球的信息交流和相互调节提供了新的证据,为研究海马神经元各种脑功能提供了详实的投射信息参考,为海马输出环路功能研究提出了海马神经元投射模式的新方向,为海马参与学习记忆、空间认知、导航、焦虑、应激等多种功能提供新的神经环路理论指导。

    该研究构建的小鼠海马区单神经元的全脑介观投射图谱数据库已经通过脑科学门户网站公开共享(https://mouse.digital-brain.cn/hipp)。中国科学院脑科学数据与计算中心开发了集可视化、交互和分析为一体的工具,并提供数据下载服务。

相关报告
  • 《Science | 小鼠内耳区婴儿社会行为的神经元》

    • 编译者:李康音
    • 发布时间:2024-07-30
    • 2024年7月25日,耶鲁大学 Marcelo Dietrich 教授团队在国际顶尖学术期刊 Science 上发表了题为Neurons for infant social behaviors in the mouse zona incerta 的研究论文。 母爱是一个安全的基础,有助于减轻婴儿的压力反应(例如哭叫),并使婴儿能够学习和形成对其发育至关重要的联系。因此,识别婴儿大脑中对与母亲作出反应的神经元对于理解大脑和行为发展的神经机制至关重要。 该研究阐明了小鼠幼崽与母亲分离和团聚过程中的情感纽带的神经基础。当小鼠幼崽与母亲团聚时,大脑中未定带(zona incerta,ZI,位于丘脑和豆核束之间的一条由散在细胞组成的灰质带)中表达生长抑素的神经元的活性增加,调节这种神经元群体的活动将影响幼崽的压力反应和学习行为。这表明这些神经元在协调与母亲的关系中发挥关键作用,并对幼鼠的行为和生理产生积极影响。这一发现为哺乳动物母婴关系的形成提供了新线索,帮助人们更好地了解大脑发育如何影响行为。
  • 《Nature | 人类海马神经元的相位-振幅耦合控制工作记忆》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-04-21
    • 2024年4月17日,西达赛奈医学中心等机构的研究人员在Nature发表题为Control of working memory by phase–amplitude coupling of human hippocampal neurons的文章。 在工作记忆中保留信息是一个要求非常高的过程,其依赖于对认知的控制来保障临时记忆痕迹免受干扰,然而,目前研究人员并不清楚认知控制调节机体大脑工作记忆储备背后的分子机制。该研究揭示了负责工作记忆的脑细胞是如何协调有意识的注意力和短期信息存储。工作记忆,正如记住一串较长电话号码以便拨打那样,是一种短暂的信息保持形式。 研究者Jonathan Daume博士表示,这项研究中我们首次识别出了一组特殊的神经元,其受到了两类脑电波的影响,这种脑电波能协调工作记忆中的认知控制和感觉信息的储存,尽管这类神经元自身并不直接储存信息,但在短期记忆保存过程中却起到了至关重要的作用。工作记忆仅需大脑在数秒内暂存信息,这一过程极为脆弱,需持续的关注力维系,同时也易受各种疾病及状态影响,如阿尔茨海默病和注意力缺陷多动障碍等疾病,患者的困难并非在于信息存储本身,而是集中在注意力的保持以及已形成的记忆能否有效维持。 研究者坚信,深入理解工作记忆的调控机制可能是研发针对此类以及其它神经系统疾病创新疗法的关键基石。为了探究工作记忆功能的具体运作方式,研究团队记录了36名接受手术并在大脑中植入电极的住院患者的大脑活动数据,这部分患者正在接受癫痫诊断。当患者执行涉及工作记忆的任务时,研究者实时捕捉了单个脑细胞的活动情况以及脑电波变化。实验过程中,研究人员在电脑屏幕上向患者展示一张或多张包括人物、动物、物体或风景在内的图片,然后屏幕会在不足三秒的时间内变为空白。此时,研究人员要求患者记住刚刚看到的图片;接着展示另一张图片,让患者判断该图是否为先前所见,或是最初三张图片之一。 当患者在运用工作记忆完成任务时表现得准确快速时,研究者观察到两类神经元——类别神经元和相位振幅耦合神经元(PAC神经元)均有放电现象。其中,“类别神经元”对照片中呈现的某一类别(例如动物)产生响应,而PAC神经元虽然不携带具体内容,但却通过相位振幅耦合过程确保了类别神经元对特定内容的聚焦和记忆固化。PAC神经元能与大脑中的θ波(与注意力和控制相关)和γ波(与信息处理关联)同步放电,从而可能协调类别神经元的活动。类别神经元进而适时地向大脑发射γ波,增强了患者回忆工作记忆中储存信息的能力。 研究者Rutishauser形象地比喻道,设想一位患者看到一张狗的图片,他大脑中的类别神经元开始发出“狗、狗、狗”的信号,而PAC神经元则仿佛发出“请注意/记住”这样的指令。借助相位振幅耦合机制,这两类神经元共同创造了一种和谐的信息叠加效应,相当于“记住这只狗”,形成了整体效果大于各部分简单相加的局面,就像一支交响乐团中,指挥者(此处指PAC神经元)协调各个乐手和谐地奏出美妙的乐章。 PAC神经元在海马体中完成了这个关键过程,海马体是大脑内长期被认为是长期记忆核心的重要区域。该研究首次揭示了海马体可能在控制工作记忆方面同样担当着关键角色。