《研究发现蛋白质翻译后修饰通过泛素化降解途径调节脂肪酸合成的新机制》

  • 来源专题:中国科学院亮点监测
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2019-03-29
  • 2月7日,国际学术期刊《自然-通讯》(Nature Communications)在线发表了中国科学院上海营养与健康研究所李于研究组的最新研究成果“Post-translational regulation of lipogenesis via AMPK-dependent phosphorylation of insulin-induced gene”。该研究发现腺苷酸活化蛋白激酶(AMPK)通过磷酸化增加内质网锚定蛋白Insig的活性,进而抑制肝脏脂质合成的功能,揭示了蛋白质翻译后修饰通过泛素化降解途径调节脂肪酸合成的新机制。

      随着生活方式和饮食结构的改变,非酒精性脂肪肝病在全球范围所占比例越来越高,并且近年来其发病率呈上升趋势。非酒精性脂肪肝与2型糖尿病、肥胖以及心血管疾病等重大代谢性疾病的发生发展密切相关。肝脏脂肪酸从头合成的增加在非酒精性脂肪肝的发生发展过程中扮演着重要角色。AMPK是真核生物主要的能量感应因子,在能量应激的情况下感应细胞内升高的AMP:ATP和ADP:ATP水平,通过抑制合成代谢,促进分解代谢使能量达到稳态。AMPK作为机体重要的能量感应因子,调控着蛋白质、脂肪和糖代谢等过程。二甲双胍是临床中治疗2型糖尿病的首选药物,能够通过激活AMPK改善机体糖脂代谢紊乱。二甲双胍在改善肝脏脂质沉积、降低人的非酒精性脂肪肝病方面同样具有良好的效果,但其作用分子机制仍需要进一步阐明。

      带着这一科学问题,李于团队博士研究生韩亚美、胡志敏等人构建了二甲双胍给药的饮食诱导的肥胖小鼠模型,通过筛选小鼠肝脏中的差异蛋白,发现二甲双胍处理能够在激活AMPK的同时显著地增加肝脏细胞内锚定于内质网的Insig-1和Insig-2的蛋白水平,与肝脏内甘油三脂含量呈负相关。通过进一步的研究发现,AMPK能够磷酸化修饰Insig,抑制Insig与E3泛素连接酶gp78的相互作用,通过抑制Insig泛素化水平和蛋白酶体降解途径,增加其蛋白稳定性;进而抑制SREBP-1的剪切活化,降低脂质合成基因表达和肝细胞脂质积累。蛋白质谱检测和生化分析表明,Thr222位点介导了AMPK对Insig-1活性增强的作用,以及对SREBP-1剪切和脂质合成基因表达水平的抑制作用。同时,研究人员发现利用腺病毒过表达Insig-1可以缓解肝脏特异性AMPKα2缺失引起肝脏脂质沉积增加的作用。这些研究表明Insig是AMPK新的靶蛋白,在介导二甲双胍-AMPK信号通路抑制肝脏脂质从头合成过程中起重要作用。

       最近,李于团队发现新型代谢因子CREBZF能够感应胰岛素信号,通过抑制Insig的转录水平,使胰岛素发挥促进肝脏脂质合成的功能,从而揭示了肝脏中为什么会发生选择性胰岛素抵抗的科学问题(Zhang F, et al, Hepatology, 2018);另外,研究发现AMPK能通过磷酸化SREBP,抑制肝脏脂质合成(Li Y, et al, Cell Metabolism, 2011)。在生理条件下,这些复杂的营养感应机制和代谢调控途径,可以有效维持机体在能量缺乏或者充足条件下的脂代谢动态平衡;然而,在长期肥胖和营养过剩条件下,这些代谢调控分子网络受阻或紊乱,引起肝脏脂代谢失衡和功能障碍,导致非酒精性脂肪肝、胰岛素抵抗和2型糖尿病。这些研究成果表明,CREBZF和AMPK介导的Insig转录调控和翻译后修饰在脂质代谢中起关键作用,为临床治疗非酒精性脂肪肝提供新的治疗策略。

      该研究得到武汉大学教授宋保亮、上海交通大学附属新华医院教授范建高、中国科学院上海药物研究所研究员李佳和李静雅、营养与健康所研究员方靖、浙江工业大学教授魏春的支持和帮助。该项目得到国家科技部重点研发计划、国家自然科学基金委、中国科学院科研基金、王宽诚教育基金等的支持。

      博士研究生韩亚美、胡志敏为论文共同第一作者,李于为通讯作者。

相关报告
  • 《研究发现关键内质网伴侣蛋白协同自噬途径负反馈调节细胞应激反应新机制》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-01-10
    • 11月14日,国际学术期刊Journal of Biological Chemistry 在线发表了中国科学院上海营养与健康研究院李于研究组的研究论文“The ER-localized Ca2+-binding protein calreticulin couples ER stress to autophagy by associating with microtubule-associated protein 1A/1B light chain 3”,该研究通过动物实验和细胞实验首次发现一种内质网分子伴侣Calreticulin通过增强细胞自噬途径降解错误折叠蛋白质,从而缓解内质网应激。这一调控机制的发现为分子伴侣蛋白维持细胞内稳态的作用和机制提供了新认识。   内质网作为蛋白质加工的重要场所,其稳态对于维持蛋白质代谢平衡有至关重要的作用。内质网内未折叠或错误折叠的蛋白质的过度滞留会引起内质网应激。持续高水平的内质网应激与多种代谢性疾病的发生和进展密切相关,如肥胖、胰岛素抵抗、2型糖尿病、脂质代谢异常等。因此,维持蛋白质稳态、降低内质网应激水平可作为代谢性疾病的潜在治疗靶点。自噬作为细胞清除内质网错误折叠蛋白的重要途径之一,其与内质网应激的相互作用及其分子机制目前尚不清楚。   博士研究生杨云志和马风光等人在研究员李于的指导下,在衣霉素(tunicamycin)诱导的内质网应激动物模型及细胞模型中发现内质网伴侣蛋白Calreticulin表达上调,同时伴随细胞自噬水平增强。研究人员通过保守区域一级序列预测及蛋白质免疫共沉淀实验发现了Calreticulin可与自噬关键蛋白LC3相互作用,并确定了其与LC3相互作用的位点。在药物诱导的内质网应激条件下,Calreticulin和LC3的相互作用增强。在体外培养的HeLa细胞中过表达Calreticulin可使细胞自噬水平增强,同时药物诱导的内质网应激得到缓解;而通过shRNA敲减Calreticulin则导致内质网应激条件下自噬无法有效激活,进一步加剧了内质网应激水平。这些结果揭示了内质网分子伴侣Calreticulin通过激活自噬缓解内质网应激的分子机制,为治疗相关代谢性疾病提供了新的思路和策略。   李于长期从事糖尿病及非酒精性脂肪性肝病研究。课题组近期研究发现:新型代谢调节因子CREBZF可能是治疗非酒精性脂肪肝合并胰岛素抵抗的新靶点(Hepatology, 2018);黄连中活性成分小檗碱通过肝脏和脂肪组织间的对话机制来降低肥胖的新理论(Sun Y, et al, British Journal of Pharmacology, 2018)。   该项目得到国家科技部重点研发计划、国家自然科学基金委、中国科学院和王宽诚教育基金的支持。 内质网伴侣蛋白-自噬途径负反馈调节内质网应激反应。在内质网应激(ER stress)条件下,Calreticulin受非折叠蛋白反应(UPR)的诱导表达上调,高表达的Calreticulin通过保守的LIR序列与自噬相关蛋白LC3相互作用,激活细胞自噬途径,从而降解累积的异常折叠蛋白,缓解细胞应激水平。该研究表明激活Calreticulin-自噬途径可能会成为治疗内质网应激及相关代谢疾病的新策略和靶点。
  • 《研究揭示蛋白质SUMO化修饰精细调控植物次生细胞壁增厚新机制》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-03-30
    • 1月18日,PLOS Genetics 杂志在线发表了中国科学院分子植物科学卓越创新中心/植物生理生态研究所李来庚研究组题目为SUMO modification of LBD30 by SIZ1 regulates secondary cell wall formation in Arabidopsis thaliana 的研究论文,揭示了蛋白质SUMO(small ubiquitin-related modifier)化修饰精细调控植物次生细胞壁增厚新机制。   细胞壁是植物细胞区别于动物细胞的主要特征之一。所有植物细胞都具有初生细胞壁,一些细胞类型,例如维管组织的纤维细胞和管状细胞中,需要形成加厚的次生细胞壁,为植物的直立生长提供机械支撑力以及水分和养分长途运输通道。次生细胞壁形成直接影响植物生长发育和抗逆性状,次生细胞壁加厚过程在时空上受到多层次的精细、复杂和严格的调控。   SUMO化修饰是一种蛋白翻译后的修饰方式。SUMO化修饰在蛋白质之间相互作用、蛋白质在细胞内的定位、转录因子活性等方面发挥多种调节功能。近日,李来庚研究组发现转录因子LBD30通过SIZ1介导的SUMO化修饰作用于拟南芥纤维细胞次生细胞壁加厚过程。研究证明了LBD30的SUMO化修饰直接对纤维细胞壁加厚的转录程序进行调控。SUMO化的LBD30促进细胞壁加厚的转录程序启动,如果LBD30不被SUMO化,则该细胞壁加厚程序不能正常启动(如图所示)。该研究首次发现了蛋白质SUMO化修饰在调控次生细胞壁形成中的重要功能,揭示了次生细胞壁形成多层次调控网络的一个新途径,为实现对细胞壁生物质的精确和定向改造提供了一条新的可操作技术路径。   博士生刘畅和哈斯为该论文的共同第一作者。该研究由国家自然科学基金委、科技部重点研发计划和中国科学院战略先导项目提供经费支持。