《美国科学家利用CRISPR基因编辑技术改造出富含类胡萝卜素的水稻》

  • 来源专题:中国科学院文献情报生命健康领域集成服务门户
  • 编译者: 陈大明
  • 发布时间:2020-03-26
  • 3月5日,美国加州大学戴维斯分校科学家利用CRISPR基因编辑技术改造出富含类胡萝卜素的水稻。该研究通过CRISPR/Cas9系统在水稻基因组的安全位置插入5.2kb类胡萝卜素生物合成元件,并且通过杂交获得无筛选标记的水稻植株。研究表明,其种子中的类胡萝卜素含量高,并且在形态或产量方面均与野生型相似,同时全基因组测序显示该工程水稻中Cas9不存在脱靶突变。相关研究成果发表于《自然·通讯》期刊。

  • 原文来源:;https://www.nature.com/articles/s41467-020-14981-y
相关报告
  • 《科学家实现竹子基因定点编辑》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-12-29
    • 福建农林大学教授朱强课题组以东南亚地区广泛种植的麻竹为材料,建立了适合麻竹内源基因的敲除的基因编辑系统,实现了对麻竹基因的定点敲除。相关成果近日发表于《植物生物技术杂志》。该研究为竹子分子生物学的发展及通过分子育种方法进行竹子农艺性状的改良提供了有力的技术支撑。 目前,世界上约有25亿人直接生产和消费竹子,2018年中国竹产业的总产值超过2000亿元。竹子是世界上生长最快的植物,但其开花周期很长。它们是禾本科植物,却具有特殊的营养器官——地下鞭根笋系统。尽管人类应用竹子的历史非常悠久,但对竹子的分子生物学研究及种质创新工作却滞后于其他主要的农林作物。 麻竹经济价值极高,其染色体为六倍体。研究团队首先建立并优化了适用于竹子的原生质体提取和转化的流程,用以快速优化适用于竹子的基因编辑元件。在该体系中通过对CRISPR/Cas9元件的优化,研究者发现玉米的UBI启动子驱动的Cas9基因及来自水稻的OsU6b启动子驱动的sgRNA,可以有效地在竹子原生质体中进行基因编辑。 为测试该体系是否可用于创制竹子突变体,研究者克隆了可能参与类胡萝卜素生物合成途径的八氢番茄红素合成酶基因(PSY1),利用此前建立的麻竹遗传转化体系,首次在六倍体麻竹的T0代中获得该基因的单拷贝突变及三个拷贝的同时突变,突变的最高效率为81.8%。PSY1纯合敲除突变体呈现了明显的白化表型,这种表型在组织培养阶段即已发生。 竹子是世界上最高的禾本科植物。先前的研究表明,赤霉素信号途径可能在这一过程中发挥了重要的作用,其中一个叫作GRG1 的基因就是受到外源赤霉素的强烈诱导。课题组克隆了该基因在麻竹中的同源基因DlmGRG1,并通过CRISPR/Cas9介导的基因编辑体系对DlmGRG1进行定点敲除,获得了DlmGRG1纯合的麻竹突变体。突变体的株型和高度明显发生了改变,其节间长度明显增长。
  • 《科学家利用基因编辑转座子改良水稻性状》

    • 来源专题:生物育种
    • 编译者:季雪婧
    • 发布时间:2024-10-29
    •     转座子(TEs)是真核生物基因组中广泛存在的DNA重复序列,约占水稻基因组的35%。转座子是植物产生遗传变异的重要来源,通过多种机制调控基因表达及表型变异。水稻的泛转座子变异图谱研究表明,转座子在水稻驯化和育种性状改良方面发挥重要作用。     近日,中国科学院院士、遗传与发育生物学研究所研究员李家洋带领的科研团队,联合崖州湾国家实验室的研究人员,在《植物生物技术杂志》(Plant Biotechnology Journal)上在线发表了题为Generation of OsGRF4 and OsSNAC1 alleles for improving rice agronomic traits by CRISPR/Cas9-mediated manipulation of transposable elements的研究论文。该研究通过对水稻基因OsGRF4或OsSNAC1的非编码区进行转座子编辑,实现了对目的基因表达的精确调控。同时,该研究创制的优良等位基因为作物遗传育种提供了新策略。     微型反向重复转座子(MITEs)是短小而非自主的DNA转座子,是水稻基因组中数量较多的转座元件,且与至少58%的水稻基因相关。研究表明,MITEs是水稻基因表达变异的主要驱动因素之一,而利用MITE插入多态性进行全基因组关联研究有助于挖掘并控制农艺性状的潜在基因。 该研究推测,通过CRISPR/Cas9基因编辑技术设计基因非编码区的MITEs转座子分布可以上调或下调目标基因的表达,从而创制新的基因等位基因型以改良水稻性状。为验证这一设想,科研人员选择水稻中的生长调节因子4基因OsGRF4和胁迫响应基因OsSNAC1进行研究。研究显示,OsGRF4可正向调控水稻产量的相关性状,在其终止密码子下游的1200bp内插入一个294-bp的PIF/Harbinger超家族MITE;OsSNAC1可以增强水稻的耐盐性,但在其上下游非翻译区未检测到MITE。研究发现,水稻某些基因下游非编码区中的MITE可以介导靶基因的翻译抑制。因此,研究认为,通过CRISPR/Cas9技术删除OsGRF4下游非翻译区中的MITE,可以创制出过表达的等位基因型。研究针对OsGRF4基因的MITE靶区域,设计构建了2个CRISPR/Cas9 sgRNAs,并对其进行编辑。科研人员对得到的无转基因的纯合突变体进行分析发现,OsGRF4基因的MITE删除,提高了OsGRF4mite突变体中靶蛋白的丰度,并改善了与产量相关的农艺现状。水稻基因上游非翻译区中的一些MITEs可作为增强子,如miniature Ping (mPing) TE可以增强盐胁迫响应基因的转录水平。因此,研究人员尝试将430-bp的mPing插入耐盐基因OsSNAC1的上游非翻译区。进而,科研人员剖析得到的纯合突变体发现,OsSNAC1基因的MITE插入,提升了盐胁迫下OsSNAC1MITE突变体中靶基因的转录水平,并增强了它的耐盐性。上述成果为转座子驱动的作物遗传育种提供了新途径。研究工作得到科技创新2030-重大项目、国家自然科学基金及海南省相关项目的支持。