《Protolabs立体光刻工艺实现航天发动机喷射器的设计》

  • 来源专题:数控机床与工业机器人
  • 编译者: 杨芳
  • 发布时间:2018-06-06
  • Protolabs是按需3D打印、CNC加工、钣金制造和注塑成型服务的供应商,具有突出的立体光刻(SL)的能力。

    该公司展示了一个3D打印的航天零件,由 Blume Engineering 设计,用作小型冲压发动机的燃料喷射器和鼻锥适配器。在项目开发阶段,设计团队利用了SL过程的快速转弯原型和精确构建能力。

    除了立体光刻技术,Protolabs还提供了聚光射流、选择性激光烧结、多射流聚变和直接金属激光烧结3D打印服务。

  • 原文来源:https://www.mmsonline.com/products/stereolithography-process-enables-design-of-fuel-injector
相关报告
  • 《德国航天中心与3D Systems携手设计液体火箭发动机喷射器》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-01-02
    • SMILE项目的发动机喷射器,通过金属3D打印设计,获得了优异的混合燃烧效率、达到轻质特点且部件数量经过整合后显著减少,30个零散部件整合为一个整体性部件。 挑战: 为小型卫星运载火箭设计制造可重复使用的液体火箭发动机喷射器 解决方案: 3DSystems鲁汶客户创新中心基于对增材制造丰富的设计经验,使用金属3D打印机ProX DMP 320和一种适用于高温应用的镍铬基超耐热合金LaserForm® Ni718 (A)达成德国航天中心要求。 成果: • 优化零件特性以提高性能 • 将喷射头部件从30个零散部件整合为1个部件 • 将喷射头部件重量降低10% 欧盟地平线2020计划中有个项目名为”欧洲SMall创新发射器“(也就是SMILE项目), 旨在设计一种小型卫星运载火箭,将小型卫星(最多达150千克)送入与太阳同步的轨道。位于德国斯图加特的德国航天中心结构与设计研究所是14个参与项目的组织之一,并负责开发SMILE项目。该研究所对液体推进系统的关注是基于系统翻新和再利用的潜力,由此为小型卫星发射器提供更具成本效益的解决方案。 鉴于液氧/煤油发动机喷射头部件的高度复杂性,德国航天中心DLR与3D Systems客户创新中心CIC合作,设计了一个3D打印喷射器,以此来实现新性能。3D Systems公司鲁汶中心是全球四个致力于加速先进应用的中心之一,为客户提供开发、验证和商业化产品所需的资源。 德国航天中心决定采用3D打印喷射头,他们利用增材制造的关键优势,包括采用整体式设计来减少零件数量以及利用集成关键功能,如冷却流道,以此来更好的整体推进系统的性能。 通过金属3D打印的喷射头将30个零散部件整合为1个整体式部件,并减重10% 马库斯•库恩和伊利亚•穆勒在德国航天中心管理喷射头项目,他们表示因为3D Systems的金属打印在航空航天领域有成功的应用,所以他们此次选择3D Systems作为合作伙伴。库恩提到:“基于DMP金属打印技术在航空方面的成功,我们认为3D Systems非常适合提供喷射头的设计到制造,可以挖掘传感器集成、燃料和冷却剂分配的新可能性。” 火箭发动机的喷射器是燃料和氧化剂进入燃烧室的部分。成功的液体火箭燃料喷射器以特定方式推动部件,确保其雾化和适当混合,产生移动火箭所需的燃烧。 3D Systems的项目工程师科恩•惠特表示,德国航天中心设想的液体燃料喷射头包含几个性能都需要通过DMP打印技术才能办到:”优化性能和冷却功能、压力和温度传感器通道的复杂设计和简化装配和保持生产的一致性和可重复性,这一切都需要ProX® DMP 320。” 对3D打印喷射头进行热火试验,显示其具有良好的混合和燃烧效率 DMP金属打印可以帮助德国航天中心达成以下目标: • 通过燃料和冷却剂分配的新可能性,优化零件性能 • 易于实现三维路径压力和温度传感器通道 • 消除中间生产和装配环节 • 不受传统制造方法的限制,独立地优化热、质量和水力性能 • 避免装配故障点,提高整体设计的质量 • 减少加工步骤,生产集成度高的多功能喷射器 通过使用金属3D打印,航空航天中心能够彻底改变同轴喷射器的设计方法,无需多个组件,显著降低生产时间和成本。零件数量从30减少到1有助于最终减重10%,并消除了紧固处已知的故障点,有利于减少相关的质量管控措施,提升了系统性能。 用精密金属打印整合部件 3D Systems的应用工程师使用3DXpert软件来准备喷射头的文件进行打印。3DXpert是一款全方位的软件,涵盖了整个金属增材制造过程。3D Systems进行打印前准备工作,从而可以方便一处后处理众多粉末,同时还进行适印性检查,以便确保打印过程不会出现状况。 德国航天中心火箭喷射器的最终部件通过3D Systems的金属打印机ProX DMP 320进行打印,使用的材料是LaserForm® Ni718 (A),一种抗氧化和耐腐蚀的铬镍铁合金。这种材料具有良好的抗拉强度、耐疲劳性、抗蠕变性和持久强度,即使温度达到700?c,是高温应用的理想选择。 喷油器头内部的一个视图显示了金属3D打印所启用的复杂性 打印完成后,3D Systems的团队对零件进行热处理以缓解应力,并使用放电加工(EDM)将零件从成型平台上移除。 无模生产加速设计周期 通过DMP技术,航天中心能够快速集成和探索设计更改,无需耗时制作模具。这种能力对德国航天中心的设计周期至关重要,因为它在第一阶段设计和测试喷射头原型时只面临几个星期的准备时间。 库恩和穆勒表示:“Prox DMP 320和3D Systems丰富的设计知识使得我们能够在更短的时间内测试更多的设计方案。“ 金属3D打印帮助航空航天中心采用同轴喷射技术和双旋流喷射器元件,优化喷射头的氧化剂和燃料混合。采用了两种不同的冷却方案,每一种都采用最小特征尺寸为0.2毫米、最大长度/直径比为45的细通道。该设计还集成了喷射头的铺膜特性,使工程师能够直接调整喷油器处的膜质量流量。 更经济的成本获得更好的性能 喷射头流量:蓝色=液化氧;橙色=煤油;红色=薄膜层;绿色=蒸腾冷却 航天中心通过直接将冷却剂分配系统与喷射器集成,使性能有所提升,工程师能够实施并独立控制壁面发汗和气膜冷却技术。当在喷射器内使用时,在燃烧室内热的一侧形成冷却剂膜,以保护壁面结构不受高热通量的影响。这种系统被认为比传统的再生冷却更容易制造和经济。 与陶瓷纤维基复合材料(CMCS)等复杂的陶瓷材料结合一起,航天中心和3D Systems开发的设计和制造方法有可能支持为了喷射头开发的结构和系统被多次重复使用,并将技术转移到其他应用中。 3D System_5 带有3D打印喷射头和陶瓷燃烧室的液化氧/煤油火箭喷射器装置 为了评估新的设计,德国航天中心对内部流动进行了数值模拟,以估计每种推进剂的燃料分布和进给线的相关压力损失。随后的冷流试验表明,数值和实验测量数据之间有良好的相关性。在西班牙的PLD Space(SMILE项目的合作伙伴)对最终3D打印喷射头进行的热火测试表明,与航空中心设计的火箭推力室组件相结合后,具有良好的混合和燃烧效率。 展望未来,金属打印支持的新设计和制造工艺将继续支持更复杂的几何结构,通过减少生产步骤来加快上市时间,优化材料和零件的使用,不断改进性能,提高结构完整性以延长喷射头的使用寿命。 穆勒表示:”我们认为可以肯定地说,与传统方法制造的先进的同等零件相比,3D打印喷射头的集成功能更优越,生产时间和成本也更低。“ 航空航天领域的金属增材制造 金属3D打印已经成为航空和航空航天领域的一项关键技术,因为它的优势与该行业的关键需求保持一致,包括减轻重量、节省燃料、提高运营效率、部件整合、加速上市时间和减少对零部件的存储要求。 最近的项目已经证明3D Systems的DMP金属3D打印技术在航空领域的有效性: • 第一台3D打印射频(RF)滤波器经过测试和验证,可用于商业通信卫星。空中客车防务及航天公司的新过滤器比以前的设计减少了50%的重量 • 泰雷兹阿莱尼亚宇航公司与3D Systems合作,钛支架减重25%,比传统方法制造具有更好的刚度-重量比 • 在欧洲航天局(ESA)的一个项目中制造的发动机部件,做到了减轻重量,简化装配,加速制造,并使后期设计更容易适应 • 一种经过拓扑优化的飞机支架,重量减少70%,满足GE航空所有功能要求
  • 《原子束通过级联硅喷射器直射》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2019-04-25
    • 对于非物理学家来说,“原子束准直器”可能听起来像是一个发射神秘粒子的相位器。这可能不是引入研究人员现在已经小型化的技术的最糟糕的比喻,使得它有可能在某一天落入手持设备。 今天,原子束准直器主要存在于物理实验室中,它们在光束中射出原子,产生奇异的量子现象,并具有可用于精密技术的特性。通过将准直器缩小到小型设备的尺寸以适应指尖,佐治亚理工学院的研究人员希望将这项技术提供给工程师推进设备,如原子钟或加速度计,这是智能手机中的一个组件。 “你可以做出的典型设备是用于精确导航系统的下一代陀螺仪,该系统独立于GPS,可以在偏远地区的卫星射程或太空旅行时使用,”钱德拉说。拉曼,乔治亚理工学院物理学院的副教授,也是该研究的联合首席研究员。 该研究由海军研究办公室资助。研究人员于2019年4月23日在Nature Communications杂志上发表了他们的研究结果。 这就是准直器的原理,原子束中的一些量子势能,以及微型准直器格式如何帮助原子束塑造新一代技术。 口袋原子霰弹枪 “准直的原子束已经存在了几十年,”拉曼说,“但目前,为了精确,准直器必须很大。” 原子束开始于一个充满原子的盒子里,通常是铷,加热成蒸汽,这样原子就会混乱。一个管子进入盒子,具有正确轨迹的随机原子射入管子,就像进入霰弹枪枪管的弹丸一样。 就像离开霰弹枪的弹丸一样,原子从射击管的末端射出相当直的射击,但也随着原子射击的随机喷射以倾斜的角度飞行。在原子束中,该喷雾产生信号噪声,并且改进的芯片准直器消除了其中的大部分,以获得更精确,几乎完全平行的原子束。 光束比来自现有准直器的光束更加聚焦和纯净。研究人员还希望他们的准直器能够使实验物理学家更方便地创建复杂的量子态。 坚定不移的惯性机器 但更准确的是,准直器设置了可以适应实际使用的牛顿力学。 改进的光束是不受约束的惯性流,因为与由无质量光子构成的激光束不同,原子具有质量,因此具有动量和惯性。这使得它们的光束成为光束驱动陀螺仪中可能的理想参考点,有助于跟踪运动和位置变化。 无GPS导航设备中的当前陀螺仪在短期内是精确的而不是长期的,这意味着经常重新校准或更换它们,这使得它们在月球或火星上不太方便。 “基于MEMS(微机电系统)技术的传统芯片级仪器受到各种应力随时间的漂移而受到影响,”联合首席研究员Farrokh Ayazi说道,他是佐治亚理工学院电气和计算机工程学院的Ken Byers教授。 “为了消除这种漂移,你需要一种绝对稳定的机制。这种原子束在芯片上创造了这种参考。” 量子纠缠光束 光束中的热激发原子也可以转换成里德伯原子,这提供了量子特性的聚宝盆。 当一个原子充足地通电时,它的最外面的轨道电子突然到达原子气球的尺寸。到目前为止,以如此多的能量轨道运行,最外层的电子表现得像氢原子的孤立电子,而里德堡原子就好像它只有一个质子一样。 “你可以利用里德堡态来设计某种多原子量子纠缠,因为原子相互作用的能力比基态的两个原子强得多,”拉曼说。 “里德伯原子也可以推进未来的传感器技术,因为它们对力的通量或电子场中的电子尺寸小于电子尺度敏感,”Ayazi说。 “它们也可用于量子信息处理。” 石版印刷硅槽 研究人员设计了一种令人惊讶的方法来制造新的准直器,这可能会鼓励制造商采用它:它们通过平行于其平面的硅晶片切割长而极窄的通道。这些通道就像霰弹枪并排排列,射出一排原子束。 硅是原子飞过的极其光滑的材料,并且还用于许多现有的微电子和计算技术中。这为将这些技术与芯片与新型微型准直器相结合提供了可能性。用于蚀刻现有芯片技术的光刻技术被用于精确切割准直器的通道。 研究人员最大的创新大大减少了类似鸟枪的喷雾,即信号噪音。他们在通道中切出两个间隙,形成三组平行的桶阵列的对齐级联。 以倾斜角度飞行的原子跳出间隙处的通道,并且在第一通道阵列中合理平行的那些原子继续到下一个通道,然后该过程从第二通道重复进入第三通道阵列。这使得新准直器的原子束具有非凡的直线度。 ——文章发布于2019年4月23日