《石墨烯家族纳米材料的毒理学评估。》

  • 来源专题:生物安全
  • 编译者: 张虎
  • 发布时间:2019-11-20
  • 随着应用范围的扩大,石墨烯族纳米材料开始通过各种方式进入人们的生活,大大增加了暴露频率。尽管进行了越来越多的毒理学研究,但石墨烯基纳米材料的生物安全性仍然难以捉摸。氧化石墨烯(GO),石墨烯的氧化衍生物,被认为是对生物医学应用有吸引力的最近出现的纳米材料之一。伴随着其应用前景,人们对其生物安全对人类和环境的关注极大。本文中,本综述旨在系统地总结体内外GO毒性的研究,然后深入讨论其毒理学机理。当前报道的GO的毒性主要取决于吸入途径,包括吸入毒性,食入毒性,皮肤毒性和血液相容性。还总结了使用非啮齿动物(斑马鱼,秀丽隐杆线虫和果蝇等)对GO进行的毒性评估,以补充GO的体内毒性。根据已报道的GO诱导毒性的综合总结,我们的审查表明,在采用纳米技术时,相当重视强调收益和风险之间的平衡。

  • 原文来源:https://www.ncbi.nlm.nih.gov/pubmed/31492205
相关报告
  • 《等离子体所在石墨烯纳米材料研究方面取得进展》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:wukan
    • 发布时间:2018-03-19
    • 近日,等离子体所应用等离子体研究室陈长伦课题组研究了氧化石墨烯纳米材料结合重金属离子(如镉、钴、锌等)与微生物之间的相互作用机理,以及生物毒性。相关研究分别发表在英国皇家化学会核心期刊《环境科学:纳米》(Environmental Science: Nano)上。 氧化石墨烯(GO)作为一种典型的纳米材料,被广泛应用于各行各业。由于其表面丰富的含氧官能团,GO在重金属污染物治理方面有比较广泛的应用。因此课题组研究了氧化石墨烯纳米材料结合重金属污染物之后的生物环境毒性行为。研究发现GO会吸附溶液里的重金属,减少了重金属浓度从而降低重金属生物毒性,二价重金属污染物也会促使GO团聚减少溶液中GO的浓度从而减小GO纳米材料的生物毒性。而未团聚的GO可以包覆在细菌表面,阻止溶液里的重金属侵入到细菌细胞内。GO纳米材料与重金属离子之间具有拮抗作用,相互降低各自的生物毒性。研究结果为准确评估和预测重金属离子和氧化石墨烯在实际多种污染物共存复杂环境体系中的迁移行为提供更为科学可靠的理论依据,同时研究结果对于氧化石墨烯的安全应用和环境评价具有非常重要的参考价值。该研究得到了国家自然科学基金项目的资助。
  • 《《先进材料》国家纳米科学中心专题综述:抗菌碳纳米材料的新进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-11-09
    • 国家纳米科学中心的宫建茹课题组在国际知名期刊Advanced Materials上发表了抗菌碳纳米材料的专题综述“Antibacterial Carbon-Based Nanomaterials”(Adv. Mater. 2018, 1804838),系统地介绍了该研究方向近年来的重要进展。 目前,由于细菌耐药性的广泛出现和迅速传播,现有的可对抗耐药性细菌的抗生素种类极其有限,新型抗生素的开发进度缓慢,细菌感染再次被列为影响全球人类健康的重要因素之一。与传统的抗生素不同,纳米材料具有较强的跨膜能力、抑制外排泵的功能和不易诱发细菌耐药性的特点,有望成为一种新型抗生素替代品。其中,碳纳米材料具有高效的抗菌活性、良好的生物相容性和环境友好等特征,展现出巨大的抗菌应用潜力。据此,该综述系统介绍了碳纳米材料的重要理化性质,主要抗菌机制,其理化因素与抗菌机理的密切关联,以及发展抗菌碳纳米材料的挑战和前景。 碳纳米材料的主要理化性质及其抗菌机制 碳纳米材料能够通过多种机制实现抗菌或杀菌作用,其中包括:细菌细胞壁/细胞膜的机械性损伤、细菌的氧化应激(活性氧依赖和活性氧不依赖两种)、光热和光催化效应(如利用具有良好光催化性能的氮化碳纳米材料,Nano Lett. 2018, 18, 5954)、脂质抽提、细菌代谢抑制、包裹隔离及其协同作用。此外,这些作用机制和碳纳米材料的理化性质密切相关,如碳纳米材料的维度决定了与细菌的作用方式,进而可能影响其主要的抗菌作用机制。文章讨论了零维的富勒烯、纳米金刚石、碳点和石墨烯量子点,一维的单壁碳管和多壁碳管,二维的碳化氮、石墨烯及其衍生物的抗菌活性和抗菌机制。除维度外,碳纳米材料的尺寸、形状、片层数及表面功能化等方面的理化性质也与其抗菌活性息息相关。例如,石墨烯量子点经不同手性氨基酸功能化后表现出明显不同的抗菌活性。研究发现,D-型谷氨酸修饰的石墨烯量子点能够同细菌细胞壁合成中所必需的MurD连接酶高效结合,通过改变该酶的结构影响其酶活性,从而导致细菌细胞壁合成受阻,以达到抗菌目的;相比之下,L-型谷氨酸修饰的石墨烯量子点与MurD结合力较弱,不会对MurD的蛋白结构和酶活性造成影响,几乎没有明显的抗菌活性。两种手性石墨烯量子点和MurD结合作用的分子动力学理论分析结果表明D-型谷氨酸修饰的石墨烯量子点与MurD之间的范德华力和氢键作用显著强于L-型谷氨酸修饰的石墨烯量子点,因此导致抗菌活性的差异(Adv. Healthcare Mater. 2017, 6, 1601011)。 手性石墨烯量子点的抗菌活性和抗菌机制 虽然目前发现了大量的抗菌碳纳米材料,但是在将其转化到实际应用的过程中仍面临诸多问题:大规模制备方法的匮乏,材料在细菌中的定位不明确(可能会对抗菌机制的研究造成阻碍),大多数材料的选择性抗菌活性不好。该课题组的前期研究发现,氮掺杂石墨烯量子点具有优异的双光子荧光性能(Nano Lett. 2013, 13, 2436),动物水平的毒理学研究表明该材料具有良好的生物相容性(Toxicol. Res. 2015, 4, 270)。借助双光子荧光等技术,能更准确地获得碳纳米材料的细菌定位信息,有助于抗菌机制的分析。此外,将氮掺杂石墨烯量子点和传统的光敏剂结合可实现双光子光动力学反应(Chem. Commun. 2018, 54, 715),产生活性氧可用于抗菌。虽然抗菌碳纳米材料的发展面临种种问题与挑战,通过借鉴碳纳米材料在其它领域尤其是材料合成和生物医学领域积累的科研成果,碳纳米材料在抗菌应用方面存在着广阔的发展前景与实际应用价值。