《突破 | 宁波材料所在高效稳定柔性钙钛矿太阳能电池及其扩展制备方面取得进展》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: 胡思思
  • 发布时间:2025-04-18
  • 光伏技术是应对气候变化等的重要解决方案。其中,柔性钙钛矿太阳能电池具有高功质比、可低温/溶液加工、超薄轻柔等优势,在可穿戴/便携式设备移动电源、建筑光伏一体化等领域展现出应用前景。然而,钙钛矿在柔性衬底上的成膜结晶质量差、机械稳定性和运行稳定性亟需改良、大面积扩展制备可靠性有待提高,这些问题对柔性钙钛矿太阳能电池的商业化提出了挑战。

    中国科学院宁波材料技术与工程研究所葛子义团队基于原位交联策略在改善柔性钙钛矿的成膜与稳定性方面的优异表现,针对已有原位交联策略需高温、引发剂引发且功能性不足的矛盾,设计了功能性可交联单体(FTA)。FTA的聚合反应是一条低温且无需引发剂的路线,其原位交联反应可辅助柔性衬底上钙钛矿的结晶,有助于得到高质量、结晶性好的柔性钙钛矿薄膜。

    研究发现,交联后的单体[CL(FTA)]沿晶界分布,可同时实现化学钝化和晶界调控,紧密连接分散的晶粒,从而抑制非辐射复合损失,释放薄膜内部残余应力,改善薄膜的本征脆性。优化后的柔性钙钛矿太阳能电池光电转换效率达24.64%(经认证为24.08%),是当前反式结构柔性钙钛矿太阳能电池的最高值,并表现出良好的运行稳定性和机械耐久性,在最大功率点连续追踪1000小时和弯折循环10000次后,仍能够保持初始效率的90%以上。同时,该策略还表现出良好的扩展制备可靠性,所制备的10.24cm2柔性模组实现了17.13%的优异效率。

    (a)原位交联策略辅助柔性衬底上的结晶和晶界操控示意图;(b)可扩展性展示

  • 原文来源:https://www.science.org/doi/epdf/10.1126/sciadv.adr2290
相关报告
  • 《突破 | 宁波材料所在高效率柔性钙钛矿太阳能电池领域取得新进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-04-10
    • 随着光伏技术的快速发展,具有高效率和低成本特性的钙钛矿太阳能电池(PSCs)受到了越来越多的关注,未来具有替代传统晶硅电池的潜力,尤其是柔性钙钛矿太阳能电池(f-PSCs)在光伏建筑(BIPV)、分布式发电、便携式设备充电等领域具有广阔的应用前景,成为当前光伏领域研究的热点。然而到目前为止,柔性钙钛矿太阳能电池所取得的光电转换效率(PCE)仍旧落后于基于导电玻璃的刚性器件,这主要是由于在柔性衬底上沉积均匀和高质量的钙钛矿薄膜具有很大挑战。 为了解决这一问题,中国科学院宁波材料技术与工程研究所葛子义研究员领导的有机光电材料与器件团队通过自下而上的策略,对电子传输层与钙钛矿层之间的界面进行修饰,向电子传输层中预埋3-氨基丙酸氢碘酸盐(3AAH),进而在锚定钙钛矿晶粒生长的同时还提升了电子传输层的质量。通过这种方法,钙钛矿薄膜在退火-冷却过程中产生的残余拉伸应力被有效释放,并转化为微压应力,钙钛矿体缺陷与界面处缺陷密度显著降低,所制备的柔性钙钛矿太阳能电池性能得到了大幅度提升,获得了23.4%的优异光电转换效率,也是目前国际上报道的柔性钙钛矿电池最高效率之一。另外,机械耐弯折性能也得到显著提高,在弯曲半径为5毫米、循环弯曲4000次后仍可以保持初始PCE的84%以上。这一策略为弥补柔性和刚性器件之间光电转换效率的差距提供了一个新的思路,推动了柔性钙钛矿太阳能电池的产业化应用研究。 图(a)预埋3AAH的柔性钙钛矿太阳能电池器件结构以及J-V特性曲线;(b) 柔性器件在曲率半径为5mm下的机械耐弯折性能
  • 《我国学者在高效稳定钙钛矿太阳能电池方面取得进展》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2025-02-06
    • 图 (A)器件结构示意图;(B、C)不同构型的电池老化后的ToF-SIMS深度剖面图。(D)无MoS2钝化和有MoS2钝化的钙钛矿的相变能量曲线。(E)钙钛矿、MoS2/钙钛矿、MoS2/钙钛矿/MoS2薄膜的TRPL衰减曲线。(F)在中国计量科学研究院认证的最优钙钛矿太阳能电池性能;(G)最优钙钛矿微型组件性能;(H)钙钛矿太阳能电池的高温运行稳定性。   在国家自然科学基金项目(批准号:52125206、52302320)等资助下,北京大学周欢萍教授与合作者在高效稳定钙钛矿太阳能电池方面取得进展。相关研究成果以“晶圆级单层硫化钼集成实现高效稳定钙钛矿太阳能电池(Wafer-scale monolayer MoS2 film integration for stable, efficient perovskite solar cells)”为题,于2025年1月10日在线发表于《科学》(Science),论文链接:https://www.science.org/doi/10.1126/science.ado2351。   金属卤化物钙钛矿以其优越的光电性能和低廉的成本成为最有前景的新一代光伏材料。尽管钙钛矿太阳能电池发展迅速,但同时实现高效和稳定仍是巨大挑战。卤化物钙钛矿由于其软晶格和相对较弱的键,在太阳能电池运行过程中容易降解。即使通过封装来隔离水分和氧气,钙钛矿在热、光照和电场下的不稳定性仍是其商业化应用亟需解决的关键问题。   周欢萍教授团队提出将晶圆级连续单层MoS2集成到钙钛矿层的上、下界面以形成稳定器件构型,从而显著增强钙钛矿太阳能电池的效率和稳定性。研究表明,晶圆级MoS2插层由于连续二维形态,从物理上最大程度地阻挡了钙钛矿离子向载流子传输层的迁移。而且,MoS2通过与钙钛矿强配位相互作用在化学上稳定了α相FAPbI3。MoS2插层还通过与钙钛矿形成Pb-S键化学钝化钙钛矿表面缺陷,并通过与钙钛矿I型能带排列阻挡少子复合,从而显著减少了载流子非辐射复合。此外,单层MoS2的原子级厚度克服了钝化质量和载流子传输之间难以协同的挑战,最大限度地提高了钙钛矿太阳能电池的开路电压(认证VOC=1.20 V)和填充因子(认证FF=84.3%)。包含MoS2/钙钛矿/MoS2结构的钙钛矿太阳能电池和组件分别实现了高达26.2%(认证稳态效率为25.9%)和22.8%的光电转换效率。此外,电池表现出卓越的湿热稳定性(在85℃和85%相对湿度下老化1200小时后保留初始效率的95%)、光照稳定性(在连续一个太阳照射下在开路状态下老化2000小时后保留初始效率的96.6%)和运行稳定性(在室温下连续一个太阳照射下在最大功率点跟踪2000小时后效率基本没有衰减,在85℃下连续一个太阳照射下在最大功率点跟踪1200小时后保留初始效率的96%)。   本研究通过界面工程将二维材料与软晶格光电材料结合起来,为提高钙钛矿基光电器件的性能提供了有效策略,并可以扩展到传感器、探测器等其他相关领域支撑高效稳定器件的构建。