《新型电动汽车电池开发增加续航里程,减轻重量》

  • 来源专题:工业强基
  • 编译者: 张欣
  • 发布时间:2024-07-05
  • 目前的锂离子电池技术受到物理和经济的限制。锂基电池重量重,生产成本高,充电速度相对较慢。Amprius Technologies开发的一种新的硅纳米线阳极技术有望提供重量和体积功率密度是当前系统两倍的锂离子电池。成本问题的解决方案是使用替代电池化学物质。比亚迪电池业务部门FinDreams计划在中国江苏省建立第一家大型钠离子电池生产厂。钠离子电池的性能较低,但与锂替代品相比,成本效益高得多。
  • 原文来源:https://www.engineering.com/story/new-ev-battery-developments-add-range-reduce-weight?fromID=50
相关报告
  • 《研究人员获汽车电池新发现 可提高续航里程》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2021-03-06
    • 据外媒报道,法拉第研究所CATMAT项目的部分成员、牛津大学的科学家们在研究下一代阴极材料时,对富锂阴极材料中氧-氧化还原过程有了新的理解,并提出可提高锂离子电池能量密度的方法。牛津大学教授兼法拉第研究所首席科学家Peter Bruce教授表示:“在不断提高锂离子电池能量密度的过程中,能够利用氧-氧化还原阴极的潜力非常重要。此外,与目前商用富镍阴极相比,氧-氧化还原阴极也能带来更大改善的。深入了解氧-氧化还原的基本机理是制定策略、减少此类材料当前局限性的重要举措,可以推动其潜在商业应用的实现。” 法拉第研究所首席执行官Pam Thomas表示:“在英国电气化竞赛中找到开创性解决方案,需要针对行业相关目标进行大规模的集中研究。法拉第研究所研究人员此次的发现开启并加速了对电池材料研究方法的探索,从而提升未来电动汽车续航里程。通过使用英国Diamond Light Source和Royce Institute的先进设备,此次突破才得以实现,这也证明维系英国研究基础设施非常重要。” 提升电动汽车续航里程需要电池材料在较高的电压下存储更多的电荷,从而实现高“能量密度”。可增加锂离子阴极材料能量密度的方法比较有限,如目前大多数阴极材料采用层状过渡金属氧化物,并添加钴、镍和锰。还有一种研究方法可将电荷存储在氧化物离子以及过渡金属离子上。 多年来,使用这种氧-氧化还原材料提高阴极能量密度也是比较有潜力的方法。但是这种材料在首次充电时会发生结构变化(主要为不可逆变化),并导致之后的放电充电循环电压明显降低,从而阻碍了其在商用电池的潜在应用。 为发现氧-氧化还原反应机理并解释上述结构变化,全球的科学家们已开展了一段时间的研究,但仍然很难做出清晰解释。诸如共振非弹性X射线散射(RIXS)等技术在过去被成功地用于探测氧的变化。但通过与Diamond Light Source的研究人员合作,法拉第研究所的研究人员成功揭示出RIXS特征,表明大部分材料中的氧化物是分子氧,而非过氧化物或其他化合物。 巴斯大学和CATMAT首席研究员Saiful Islam教授表示:“计算模型证明,分子氧的变化可解释两种观察到的电化学反应,一是首次放电时的电压降低问题,二是结构变化问题。以上两种反应在材料的大部分地方可以得到解释。这种将分子氧和电压损失联系在一起的统一模型,可帮助研究人员提出切实可行的策略,避免氧-氧化还原引起的不稳定性,从而为实现更高可逆的高能量密度锂离子阴极提供可能途径。”论文共提出六种极具潜力的策略,目前均在CATMAT项目进行研究。理解机械原理可加快这些领域的研究速度,为迭代、反复试验和错误尝试提供替代方案。在新研究方向上,研究人员正在开发一种独特的“上层结构”,控制过渡金属层中锂原子的顺序,从而提高结构稳定性并减少电压损失。
  • 《研究人员找到恢复锂电池部分性能的方法 提高电动汽车续航里程》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2021-12-27
    • 据外媒报道,美国能源部SLAC国家加速器实验室( SLAC National Accelerator Laboratory)和斯坦福大学(Stanford University )的研究人员,可能已找到部分恢复可充电锂电池性能的方法,有望提高电动汽车的续航里程。 在锂电池循环过程中,所积聚的小岛状非活性锂会与电极断开,从而降低电池的电荷存储的能力。然而,研究小组发现,可以让这些“死”锂,像蠕虫一样向其中一个电极蠕动,直到二者重新连接,从而部分逆转不需要的过程。 测试显示,额外增加这一步骤,能够减缓测试电池退化,使电池寿命增长近30%。研究人员正在探讨,如何通过超快放电步骤,恢复锂离子电池的损耗容量。 失去连接 相对于目前电动汽车使用的锂离子电池,现在大量研究正在寻找方法,以制造重量更轻、寿命更长、具有更高安全性和更快充电速度的可充电电池。研究人员尤其关注开发锂金属电池,以在单位体积或重量上存储更多的能量。在电动汽车中使用新一代电池,可以增加单次充电里程数,并且所占用的后备箱空间可能更少。 在这两类电池中,带正电荷的锂离子均在电极之间来回穿梭。随着时间的推移,一些金属锂不再具有电化学活性,从而形成孤立的锂岛,无法与电极连接。这会导致容量损失,对于锂金属技术和快速充电锂离子电池,这一问题尤为严重。 在此项研究中,研究人员证明,通过调动和恢复孤立的锂,可以延长电池寿命。斯坦福大学Yi Cui教授表示:“孤立的锂一直被认为是不好的。然而,研究人员已发现,如何将‘死亡的’锂与负极重新进行电气化连接,以重新激活它。” 孤立的锂岛并未“死亡” Cui开始推测,向电池正、负极施加电压,可以使孤立的锂岛在电极之间物理移动。研究人员由此产生进行这项研究的想法。该团队已通过实验,证实了这一过程。 研究人员制造了一个光学电芯,其中带有锂镍锰钴氧化物 (NMC)正极和锂负极,并且正负极之间有一个孤立的锂岛。通过该测试设备,能够实时跟踪电池使用时发生的内部情况。 结果显示,该孤立的锂岛并没有“死”,而是对电池运行做出了反应。当给电池充电时,该岛慢慢向正极移动;放电时,则向反方向蠕动。Cui表示:“就像一只非常缓慢的蠕虫,头向前移一点,尾巴再往里一点,这样一纳米一纳米地移动。在这种情况下,通过溶解一端并将物质沉积到另一端来输送。如果能让锂蠕虫保持移动,最终会接触到正极,并重新建立电气连接。” 延长电池寿命 研究人员已通过其他测试电池和计算机模拟验证这一结果,并且证明在真实的电池中,通过调整充电充电方案,可以恢复孤立的锂。Liu表示:“在放电过程中,可以使分离的锂向负极移动,而且电流越高,移动得越快。因此,研究人员在电池充电后增加快速、高电流放电步骤,以使孤立的锂移动得足够远,并重新连接到负极上。这样就可以重新激活锂,使其参悟电池的使用过程。” 据称这些研究结果,对于设计和开发更坚固的锂金属电池,也具有重要意义。