《美科学家最新研究显示调控外应力可以改变催化剂性能》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: wukan
  • 发布时间:2018-06-01
  • 近年相关科学研究表明,通过调控金属催化剂应力(无论是压应力还是拉应力)可以在某些情况下改变它们的催化性能。布朗大学Peterson教授带领的研究小组开发了一种基于力学的特征应力模型来定性地预测表面位点上的结合能对应变的响应特性,并且使用该模型来系统研究应力对吸附物-催化剂结合的影响。研究结果显示,外应力对催化剂的影响取决于反应物的内应力。这个新理论可以为不同的化学反应改良催化剂提供科学理论参考。该模型表明,结合能对应变响应的情况取决于被吸附物诱导的本征应力与所施加的应变的耦合。因此,拉伸应变可以使结合更强或更弱,这取决于表面上被吸附物的本征应力特征。Peterson和他的研究小组表明,外部应变对催化剂的影响取决于化学反应物的内部应变,即与催化剂表面结合的反应物分子会倾向于吸引或排斥催化剂晶格中的原子,这取决于反应物分子的特征和结合位点。使催化剂原子晶格拉伸的拉应力,会使催化剂对晶格分开的分子反应活性更高。同时,对于将晶格拉在一起的分子反应,拉应力会降低,以提高它们的反应活性。而压应力-压缩晶格则具有相反的效果,使催化剂原子晶格压缩的压应力,会使催化剂对晶格拉近的分子反应活性提高。对于将晶格分离的分子反应,压应力会降低,以提高它们的反应活性。催化剂表面吸附分子的位点可能会在桥位或四叠位,两个位置之间的根本区别在于:在桥位,受到拉应力作用相邻的原子被往外拉伸;而在四叠位,受到的是压应力,相邻原子被拉向内部。因此,桥位的正本征应力和拉应力稳定相互作用,而四叠位的负本征应力和压应力稳定相互作用。该项研究揭露了外应力是影响催化剂性能关键因素,增强还是削弱取决于化学物质与催化剂原子晶格的相互作用,以及在催化剂表面施加应力的方式,为设计开发高性能的催化剂提供了重要的科学理论参考。相关研究工作发表在《Nature Catalysis》杂志上 。

相关报告
  • 《金属所烷烃脱氢反应催化剂研究取得进展》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-01-10
    • 烯烃作为一种重要的有机物单体原料,与人类的日常生产和生活密切相关。例如,乙烯、丙烯和苯乙烯等被广泛用于各种工程塑料、橡胶、树脂的合成中。工业上苯乙烯主要是在过量过热水蒸气的保护下,由钾促进的氧化铁催化剂催化乙苯脱氢制得。这种传统的生产方法需要消耗大量的能源和水资源,不利于绿色经济的发展。因此,探索和研制新型的催化材料并降低反应能耗一直是工业脱氢领域研究的重点。   MXene作为一种新型的过渡金属碳化物二维晶体,具有和石墨烯类似的结构。它可以通过氢氟酸刻蚀层状陶瓷材料MAX相获得,具有优异的力学、电子、磁学等性能,主要被用于电化学储能,复合材料增强、润滑、电磁屏蔽等领域的研究。   近日,中国科学院金属研究所催化材料研究部副研究员刘洪阳和博士刁江勇等人组成的低碳烷烃活化研究小组与副研究员李波、研究员王晓辉合作,将Ti3C2TxMXene材料用于乙苯脱氢制苯乙烯反应中,发现单位比表面积的MXene材料的乙苯脱氢活性达到了92μmol m-2 h-1,苯乙烯选择性达到了97.5%,要远高于目前已知的高活性非金属脱氢催化剂,并且表现出优异的高温稳定性。通过多种表征手段和第一性原理计算,发现该反应以刻蚀过程中产生的C-Ti-O官能团作为脱氢活性位,依次脱去乙苯分子中乙基上的两个氢原子而得到苯乙烯。同时,MXene材料的层状结构也有利于反应过程中的传热和传质,从而使该催化剂具有较高的比活性和稳定性。   该项工作是首次将MXene材料用作烷烃脱氢反应的催化剂,并成功揭示了该催化剂催化烷烃脱氢的活性位和反应路径,从而为工业烷烃脱氢催化剂的开发提供了新的选择。该成果于近日发表于ACS Catalysis。   该项工作得到国家基金委青年基金、国家基金委面上项目、国家基金委“碳基能源转化”重大研究计划培育项目、科技部重点研发计划“纳米专项”青年科学家项目、中国科学院青年促进会、中国科学院金属所以及中石化企业项目的支持。
  • 《中国科大揭示金属纳米催化剂尺寸效应》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-03-30
    • 金属纳米颗粒的尺寸效应对负载型金属纳米材料的催化活性和选择性有重要影响。从几何结构上看,随着金属颗粒尺寸的减小,低配位原子逐步暴露且比例渐渐升高,显著改变催化材料活性中心的结构和比例。从电子结构上看,金属颗粒的电子能级也因量子尺寸效应发生显著改变,极大地影响催化材料和反应物之间的轨道杂化和电荷转移。由于金属纳米催化颗粒的几何结构和电子结构随其尺寸同步改变,使得人们无法有效区分两种结构效应对催化反应活性、选择性的贡献以及对尺寸的依赖关系。如何揭示金属催化剂尺寸效应的内在本质,打破几何结构效应和电子结构效应与颗粒尺寸的强关联性,进而优化设计性能更好的催化剂,是目前多相催化领域的一大挑战。   针对这一问题,中国科学技术大学教授路军岭课题组和李微雪课题组展开实验和理论合作研究,首次揭示了金属纳米催化剂中几何效应和电子效应各自对催化反应随尺寸变化的调变规律,创造性地提出一种拆分剥离金属颗粒几何效应和电子效应的策略——金属纳米颗粒的“氧化物选择性包裹”。在具有重要应用背景的Pd催化苯甲醇选择性氧化到苯甲醛反应中,实现了高活性和高选择性转化。相关研究结果以Disentangling the size-dependent geometric and electronic effects of palladium nanocatalysts beyond selectivity 为题,发表在国际期刊《科学进展》上(Science Advances,2019, 5, eaat6413)。   醛类化合物是合成精细化学品的关键中间体。醇选择性氧化制醛是重要的基本化工过程。路军岭课题组系统研究了苯甲醇选择性氧化反应中金属Pd催化剂的尺寸效应,发现Pd颗粒的催化活性和选择性随颗粒尺寸均呈“火山型”变化趋势(图1A,B):在大尺寸时,虽然选择性高,但比活性较差;在4nm处,虽然比活性较高,但选择性较差;而在小纳米尺寸时,虽然选择性较高,但比活性较差。为了剥离几何效应对此变化趋势的贡献,该课题组基于原子层沉积(ALD)技术,利用Al2O3和FeOx分别选择性地包裹Pd颗粒的低配位和高配位原子(图1C,D),在不改变颗粒尺寸和电子结构情况下,实现了对Pd颗粒暴露原子的低配位/高配位比例的精准调控,为研究几何效应对催化反应的单独贡献奠定了基础。基于该策略,研究团队发现当催化剂尺寸大于4nm时,几何效应占主导地位:尺寸越大,低配位原子比例越低,选择性越好;当催化剂尺寸小于4nm时,尽管低配位原子比例越来越高,但选择性却越来越好,光电子能谱(XPS)数据表明Pd的电子结构发生显著变化,预示着电子效应可能反转了选择性的变化趋势。   为了理解实验中观测的催化反应活性和选择性随尺寸变化的双火山曲线变化规律,李微雪课题组展开了第一性原理的理论计算研究。在理论上首次发现在大尺寸Pd催化苯甲醇选择性氧化中,高低配位Pd表面上活性氢物种的氧化与加氢两个反应路径的竞争是几何效应产生的关键:高配位Pd原子处的活性氢物种容易与表面羟基反应生成水,有助于苯甲醛的产生;相反,低配位Pd原子处的活性氢物种更容易对苯甲基加氢,从而有助于甲苯的生成。该结果揭示了实验上观测大尺寸几何效应产生的微观机制。基于不同尺寸的Pd团簇模型(图2),计算发现由于电子效应导致Pd的功函数随粒径减小逐步降低,和实验上观测到的光电子能谱数据变化规律一致,Pd颗粒和反应物中间体之间有更多的电荷转移,形成更强的化学键,从而降低了反应活性,使得加氢到甲苯变难,苯甲醛选择性提高。这一结果从微观上证明了在小纳米粒子时的确是电子效应反转了选择性随尺寸的变化规律。   综上所述,研究人员发现在较大(>4nm)和较小(<4nm)的颗粒上,几何效应和电子效应分别控制主导反应的性能,从而使催化反应的选择性和活性都随颗粒尺寸呈“火山型”变化趋势。在此基础上,通过“氧化物选择性包裹”4nm颗粒的低配位原子,有效抑制了副反应的发生,获得高比质量活性和高选择性的催化剂(图1)。该工作提出的“氧化物选择性包裹”金属纳米颗粒的策略,不但能够有效拆分剥离金属颗粒的几何和电子效应,而且打破了催化性能随颗粒尺寸变化的“火山型”曲线。该策略为理解催化反应中的几何效应和电子效应提供了有效手段,并且为设计高活性、高选择性的金属催化剂提供重要指导。   论文第一作者是中国科大化学与材料科学学院博士生王恒伟和美国韦恩州立大学博士顾向奎。通讯作者路军岭和李微雪共同指导了该研究。该项研究得到国家自然科学基金面上项目、国家自然科学基金重大研究计划、国家重点研发计划、中国科学院创新群体、中国科学院前沿重点研究课题、中央高校基本科研业务费、马克思-普朗克伙伴小组等资助。