《化学所等在石墨烯纳米带制备研究中取得进展》

  • 来源专题:能源情报网信息监测服务平台
  • 编译者: guokm
  • 发布时间:2022-01-10
  • 硅基晶体管的集成正在接近工艺物理的极限,而具有超高载流子迁移率的石墨烯有望成为下一代主流芯片材料。石墨烯纳米带中存在由量子效应引入的带隙,使之具有独特的电学性能,可以克服石墨烯本身半金属特质带来的不便,更适用于集成电路的制造。

    在国家自然科学基金委、科技部和中国科学院的支持下,中国科学院化学研究所有机固体实验室研究员于贵课题组在石墨烯二维材料的制备策略、性能及其应用方面开展了系列研究。前期工作中,科研人员对具有扭转角的双层石墨烯的制备策略及其独特性能进行了系统总结 (Adv. Mater. 2021, 33, 2004974.);进一步综述了扭角多层石墨烯及其异质结的制备方法,并回顾了多种类型的异质结自上而下的制备策略(Adv. Sci. 2021, DOI:10.1002/advs.202103170. ACS Nano 2021, 15, 11040.);此外,科研人员总结了不同类型的衬底用以制备高质量石墨烯及其在电子学方面的应用(Chem. Mater. 2021, 33, 8960.)。由于本征石墨烯的零带隙限制了其在光电器件中的应用,因此科研人员分析总结了石墨烯纳米带自下而上的生长策略,通过调控石墨烯纳米带的宽度、边缘结构等可以实现带隙调节(Adv. Mater. 2020, 32, 1905957.)。

    快速、大面积、低成本制备高质量石墨烯纳米带的方法仍有待发展。最近,课题组和清华大学教授徐志平团队合作通过调控化学气相沉积过程中的生长参数,直接在液态金属表面原位生长出大面积、高质量的石墨烯纳米带阵列(如图)。研究表明,将氢气的流速控制在相对微量的状态,同时以液态金属作为催化基底,可以引入一种新型的梳状刻蚀行为,从而调控石墨烯的生长。实验发现,利用梳状刻蚀控制石墨烯的生长可以将传统的薄膜生长转化为准一维的线性生长,从而直接制备高质量、大面积的石墨烯纳米带阵列。通过优化生长条件,可以将石墨烯纳米带的宽度缩小至8纳米,并且长度大于3微米。该工作为大面积、快速制备石墨烯纳米带的研究奠定了基础。

    相关研究成果发表在National Science Review上。

  • 原文来源:http://www.nengyuanjie.net/
相关报告
  • 《近代物理所在石墨烯纳米孔研制中取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2017-12-29
    • 石墨烯是由单层碳原子以蜂窝状点阵组成的典型二维纳米材料,完美单层石墨烯对于任何分子均不能渗透,是迄今为止厚度最薄且能分离不同两相的隔膜材料。带有纳米孔的石墨烯则表现出优异的溶液离子和气体分子选择性,在海水淡化、污水处理、空气净化等领域具有广阔的应用前景。目前国际上已发展了多种制备石墨烯纳米孔的方法,但如何在大面积石墨烯样品上快速制备高密度纳米孔仍未得到有效解决。中国科学院近代物理所材料研究中心研究人员在聚合物纳米孔研究基础上,发明了一种快速制备具有微孔支撑的大面积多孔石墨烯的新方法,解决了当前多孔石墨烯研究中的瓶颈问题。   科研人员把大面积石墨烯转移至PET膜上形成G/PET复合结构(图A),然后利用兰州重离子加速器提供的高能重离子对G/PET复合结构进行辐照,形成石墨烯纳米孔并在PET中形成潜径迹(图B);再利用非对称蚀法在PET中制备出锥形孔并形成具有微孔支撑的石墨烯纳米孔(图C)。该方法充分发挥了兰州重离子加速器离子能量高、穿透能力强的特点,可方便、快速地制备出具有微孔支撑的大面积、孔密度可控的多孔石墨烯,并获得授权发明专利。 重离子辐照技术制备石墨烯纳米孔   研究人员利用该方法制备出单个石墨烯纳米孔,精确研究了溶液中离子在纳米孔的输运特性,发现石墨烯纳米孔不仅具有良好的离子选择性,而且表现出巨大的离子整流效应,该结果在微纳流控器件开发和石墨烯纳滤膜制备方面具有重要意义。研究工作得到国家自然科学基金和中国科学院青年创新促进会的支持,相关研究成果发表在ACS Applied Materials & Interfaces上。
  • 《近边石墨烯纳米带的研究进展:性能研究和结构制备》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2019-01-22
    • 近边石墨烯纳米带(CEGNRs)中不存在悬空键,这赋予了它们一系列迷人的特性,尤其是与圆柱形碳纳米管和开边石墨烯纳米带相比。本文描述了CEGNRs的结构,以及结构相关的性能,包括机械、热、电、光学和磁性。根据其独特的结构和优异的性能,讨论了其在场效应晶体管、能源供应商、纳米驱动器和光纤等领域的应用前景。值得注意的是,文中详细描述了用于生成CEGNRs的策略,这些策略主要来自于碳纳米管和石墨烯管的坍塌。最后,对CEGNRs的研究领域进行了展望。 ——文章发布于2019年1月20日