《研究发现氮素沉降对植物有深远影响》

  • 来源专题:农业立体污染防治
  • 编译者: 金慧敏
  • 发布时间:2016-04-08
  • 加利福尼亚大学的科学家和教授对美国15000多个站点进行了研究,发现人类活动引起的氮素沉降可引起生物多样性的下降。大气氮素沉降的增加主要是来源于化石燃料的燃烧、农业肥料施用和牲畜废弃物。少量的氮素可以作为肥料促进植物生长,而土壤中大量的累积可能降低土壤健康,造成植物物种的损失。

    研究人员发现,15136个站点中24%的站点氮素沉降超过了造成生物多样性损失的临界负载量。这些站点涵盖了美国的森林、林地、灌丛带和草地。物种丰富度与氮素沉降存在负相关关系。在酸性和中性或碱性土壤和在干燥和潮湿的气候中,氮沉降对植物物种丰富度的影响更加明显。

相关报告
  • 《中日科学家合作研究发现了影响木质素合成的关键酶》

    • 来源专题:农业科技前沿与政策咨询快报
    • 编译者:李楠
    • 发布时间:2017-11-28
    • 乙醇,俗称酒精,是一种清洁、可再生的生物燃料。传统的酒精生产是通过甘蔗中的蔗糖或玉米淀粉中的葡萄糖发酵而成。近年来,随着人们对生物燃料需求量的不断增加,甘蔗叶、玉米秸秆、稻草等植物中非食用部分的纤维素被用来作为生物乙醇生产的原材料。然而,由于纤维素与植物细胞壁中的木质素有交联作用,很难从纤维素中分解出葡萄糖。木质素是一种复杂的高聚物,使植物具备强抗折性和结构完整性。然而,为了在生物乙醇生产中更高效地利用纤维素,需要昂贵、复杂的步骤来减少木质素带来的障碍。 水稻及其它谷类属于禾本科,这些植物茎叶上的木质素包含一种名为麦黄酮的特殊成分。香港大学(University of Hong Kong)植物生化学家卢思聪(Clive Lo Sze-chung)博士及其学生林佩莹(Lydia Lam Pui-ying)博士,与日本东京大学的木质素专家飞松裕基(Yuki Tobimatsu)博士合作研究发现,敲除麦黄酮化合物中的一个关键酶——黄酮合酶Ⅱ(FNSII)后,就不会再生成麦黄酮,而且稻草中的木质素也减少了约三分之一。此外,在没有任何化学方法的干预下,纤维素降解所产生的葡萄糖也增加了37%。这一研究突破近日发表在著名的植物科学期刊《植物生理学报》(Plant Physiology)。 卢思聪博士指出:“这是首次通过干扰麦黄酮合成来减少稻草细胞壁中的木质素含量,更重要的是,没有对水稻生长和产量造成负面影响。”由于禾本科植物的木质素都含有麦黄酮,这一策略可以用于玉米、小麦、大麦等谷物,以及高梁、柳枝稷这些在世界各地广泛种植且专为乙醇生产的禾本科植物,以便更有效地将这些植物用作生产生物燃料的原材料。纤维素降解产生的葡萄糖可以用来生产生物乙醇。换句话说,木质素处理成本降低,乙醇产量增加,因此用这种稻草来生产乙醇更加有效。 林佩莹博士最近获得了日本学术振兴会(Japan Society for the Promotion of Science, JSPS)外国人特别研究员资格,将于今年九月份在东京大学开始其博士后研究。她表示:“我非常荣幸能够从事一项裨益社会的研究项目。作为一名香港人,一直以来我受到的教育就是要快速、高效地工作。在东京大学的八个月研究期间,东大学生极端谨慎、精准做实验的态度给我留下了非常深刻的印象。我今天做研究时,也时常告诫自己,除了速度和效率,还要力求完美。” (编译 李楠)
  • 《低剂量、反复暴露污染物对植物发育和激素稳态的影响》

    • 来源专题:农业立体污染防治
    • 编译者:季雪婧
    • 发布时间:2019-07-01
    • 处理后的废水越来越多地用于满足农业用水需求,然而,经处理的废水含有许多新近关注的污染物(CECs)。随着CECs的暴露和摄取,作物植物的植物毒性和健康受到关注,但是人们对其了解甚少。本研究评估了10种CECs混合物,包括4种抗生素、3种抗炎药、1种抗癫痫药、1种β受体阻滞剂和1种抗菌药,对莴苣(Lactuca sativa)和黄瓜(Cucumis sativa L.)植物低剂量、持续暴露的影响。将CEC混合物添加到营养培养基中,其处理废水流出物的典型浓度为1至20倍。测定了发芽、生长、植物激素稳态和CEC生物累积等生物学终点。在7天的培养期间内,暴露于CEC混合物不影响莴苣种子的发芽率,但能刺激根伸长,增加根-茎生物量比率。暴露30天后,黄瓜幼苗的生物量呈剂量依赖性降低,CEC处理率最高,地下、地上和总生物量的下降率分别为51.2±20.9、26.3±34.1和33.2±41.7%。叶片中脱落酸的水平显着升高(p<0.05),但在根中降低(p<0.05)。生长素的剂量反应具有激效特性。观察到茎生长素水平在1X CEC速率下显着增加6倍,在20X速率下减少至对照的2倍。叶生长素浓度在1X CEC速率下也显着增加至16倍,然后在最高CEC速率下降低。该研究的结果表明长期暴露于低水平的CEC混合物可能损害植物的适应性,并且通过激素平衡的改变损伤加重。