《基于多模态信息融合的麦田杂草检测与管理系统设计与开发》

  • 来源专题:农机装备
  • 编译者: 袁雪
  • 发布时间:2025-04-17
  • Abstract:
    Weeds can pose a serious threat to the wheat production in recent years, leading to the yield reduction and quality deterioration. Current chemical control has been the primary removal of weeds in wheat fields. However, it is often required to accurately identify and locate the weeds, in order to avoid the excessive pesticide application, low utilization efficiency, and severe environmental pollution. Therefore, there is an urgent need for the rapid and accurate identification of weeds during wheat production. The variable-rate application can also be used to guide the weed distribution mapping and operational decision making. Weed detection in wheat fields is essential to the precision weeding for the high accuracy and efficiency. Existing studies can rely primarily on the manually designed features, such as the spectral, color, texture, and positional information, in order to detect the broadleaf weeds during the wheat seedling stage. However, it is difficult to distinguish the wheat from the grass weeds, due to their similar morphology. Furthermore, the high precision removal of the weeds is required for the accurate detection and the generation of spatial distribution maps. Previous studies on agricultural weeding have focused mainly on the navigation and control system. It is still lacking on the protocols. Navigation systems have relied typically on the crop row features and coordinate information for the path planning, without considering the actual weed distribution in the field. In this study, a detection system was proposed for the weeds in the wheat fields using multimodal fusion. Accurate detection was performed on the various weed species, particularly grass weeds that closely resemble wheat. A dual-branch network was designed to simultaneously extract the features from RGB and depth images. The feature maps from the different convolutional layers were also fused using a multi-scale object detection. Finally, an attention mechanism was employed for the adaptive multimodal feature fusion. Additionally, the spatial distribution and removal protocol of weeds were introduced after mapping. According to the weed detection and the image coordinate, the weed species, area, location, distribution maps were generated for the different weed types. Their spatial distribution was also visualized in wheat fields. A weed index system was proposed for the different species. A ratio-based algorithm was utilized to quantify the weed occurrence, providing a strong reference for the herbicide selection. Considering the operational constraints of the agricultural machinery, the K-means clustering algorithm was applied into the weed regions, in order to determine the spray area and herbicide dosage. The weed protocols were tailored for the precision weeding equipment, thus offering the decision-making and technical assistance. Field tests demonstrate that the multimodal fusion model was significantly improved the detection accuracy of the weeds. Compared with the single-modal RGB images, the detection accuracy increased by 13.1% for the grass weeds. Performance and functionality tests confirm that the control system operated stably across multiple platforms, thus achieving the real-time and accurate detection of various weed species, together with the decision information. The multimodal fusion can provide the critical technical support to detect the grass weeds for the precision weeding.
  • 原文来源:http://www.tcsae.org/article/doi/10.11975/j.issn.1002-6819.202412210
相关报告
  • 《多传感器融合智能除草系统,用于番茄植株检测和株内杂草定向微喷》

    • 来源专题:农机装备
    • 编译者:江浩
    • 发布时间:2025-06-04
    • 点击上方蓝字 轻松关注我们 中国科学院1区Top | IF=7.7 2025.05.29在线发布|本文作者详情如上图 图文概要 杂草对番茄植株的生长构成重大威胁,尤其是在植株生长初期。与行间杂草相比,作物行内杂草由于其位置特殊,更难控制。为了应对这一挑战,本研究提出了一种智能精准微喷系统,该系统利用传感器融合和双精度喷洒技术,实现行内杂草的精准喷洒。番茄植株被贴上机器可读的植物标签,以简化杂草和作物的分类算法。本研究利用开发的算法将来自颜色标记传感器的传感器数据与摄像头采集的图像数据进行融合。 其他人正在查看类似内容 Top期刊 | 新型植物可穿戴传感器:更懂植物的智能监测方案 南京农大智慧农业团队:作物估产常用的无人机遥感平台及传感器 【Nature】农业传感器:构建植物互联网时代 基于传感器信息计算出图像中植物标签的坐标,为植物图像分类提供先验信息。为了提高除草剂的覆盖率,本研究采用两种不同大小的网格划分了不同空间分布的杂草。通过实时传感器数据和自适应算法实现了除草剂施用的精确控制,同时通过两种不同模式下喷雾器的协同施药对划分后的网格进行了针对性处理。 实验结果表明,该系统对番茄植株和杂草的分类准确率达到95.43%,证明了该系统的有效性。此外,在模拟实验中,99.96%的检测到的杂草得到了有效处理,与单精度喷洒系统相比,处理率提高了1.40%。 本文研究全文获取途径:后台回复“457” 图1 除草装置的机械结构 图2 图像中的植物分割过程。(a)相机拍摄的原始图像,(b)图像的颜色分割结果,(c)形态学运算后的结果图像 图3 不同数量的检测线捕获的植物标签。(a)3 条检测线捕获的植物标签,(b)2 条检测线捕获的植物标签,(c)1 条检测线捕获的植物标签。 图4 图像中番茄植株和杂草的分类。(a)植物标签坐标(红色);(b)植物标签的信号容差区域;(c)番茄植株(红色)和杂草(绿色)的分类结果。 图5 喷涂模块示意图。(a)固定喷涂模块,(b)可移动喷涂模块。 图6 第一除草单元喷洒示意图。 图7 杂草划分结果 图8 番茄株内除草装置试验台 图9 精密喷涂试验结果 农业科技侠交流群 入群可添加小编微信(扫描下方二维码,备注:来意-姓名-单位,若二维码添加失败,请公众号后台私信留言“入群”) 投稿、宣传推广、开白等请在本公众号后台回复“1” 转载请注明来源:本文转自农业科技侠数字与智慧农业微信公众号 编辑:吕一帆 声明:本文旨在前沿分享,若有编辑等问题,敬请后台留言
  • 《广州健康院开发基于CRISPR/Cas的多模态通用报告器检测葡萄球菌》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-08-31
    •  近日,中国科学院广州生物医药与健康研究院李志远团队在学术期刊analytical chemistry上发表了题为A Rationally Designed CRISPR/Cas12a Assay Using a Multimodal Reporter for Various Readouts 的研究成果。文章展示了一种基于CRISPR/Cas系统的新型检测方法CAMURE,通过应用于检验葡萄球菌肠毒素A标志物,验证了CAMURE比DETECTR检测具有更高的灵敏度和特异性,具有广泛的临床和生物应用价值。   金黄色葡萄球菌是一种常见的食源性致病微生物,其产生的葡萄球菌肠毒素(staphylococcal enterotoxins,SEs)具有高热稳定性和蛋白酶抗性。常用的检测SEs的方法为免疫分析法和聚合酶链反应法,但这两种方法周期长、成本高昂、易受仪器限制,不利于大范围推广应用。   本项研究首次揭示了一种基于Cas12a的新型多模态通用报告器(CAMURE)。使用新开发的CAMURE检测葡萄球菌肠毒素,检测结果显示其与已报道的传统报告器相比增强了10倍的灵敏度,并且配合多模式读数,可以传达出与传统报告器相同的诊断结果。同时,该研究中新研发的CAMURE可以通过简单地重新编程引导RNA来检测所有基因编码的SEs,也可以应用于其他感染和疾病生物标志物的检测。该研究还进一步提出了一种快速的DNA提取方法,通过使用Triton X-100溶液在2-5分钟内从牛奶样品中提取出高质量的DNA,而无需使用商业提取试剂盒,该方法能够扩展到其他基因编码的疾病标志物检测。   该研究为快速准确检测葡萄球菌肠毒素提供了新方案,并且为更多病原菌的检测提供了可能。总的来说,该技术能够有效整合到当地卫生保健系统中,将其影响扩大到卫生条件落后的人群。尤其在先进实验基础建设有限的地区,即时诊断在改革医疗保健方面有巨大的前景。该方法可以通过重新设计crRNA来检测其他基因编码的肠毒素和其他感染和疾病标志物,包括传染性和非传染性的病原体(如疟疾、HIV和COVID-19)和癌症筛查,具有广泛的临床和生物应用价值。   广州健康院Jean de Dieu Habimana为该论文的第一作者,广州健康院李志远研究员为该论文通讯作者。该研究成果得到了湖南省重点研发计划、广东省自然科学基金、湖南省自然科学基金等项目资助。