《微生物所研究团队揭示肠道组织共生菌调控肿瘤免疫监视的功能》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2023-03-10
  •   近日,王硕团队系统研究了结直肠癌患者肠道组织共生菌群的组成和功能,揭示了肠道组织中毛螺菌科共生菌Ruminococcus gnavus (Rg) 和Blautia producta (Bp)能够通过降解组织微环境的溶血甘油磷脂,促进CD 8+ T细胞肿瘤免疫监视功能,从而抑制结肠癌发生发展的作用机制,相关研究成果发表在国际学术期刊Cell Host & Microbe杂志。

      目前已有的研究关于抑制结直肠癌肿瘤发展的共生菌群及其调控肿瘤微环境的代谢和免疫监视功能报道较少。为研究肠道组织内共生菌的组成,王硕团队对结直肠癌患者的结肠组织(正常、癌旁和肿瘤组织)进行了16S rRNA基因测序。研究发现,正常组织内菌群的多样性明显高于肿瘤和癌旁组织。在正常组织中,毛螺菌科的Ruminococcus, Dorea 和 Blautia等菌属的丰度较高,而在肿瘤组织中,Fusobacterium 和 Peptococcaceae菌属的丰度较高。通过小鼠皮下瘤模型和炎症诱导的肠癌模型,研究发现毛螺菌科的Rg 和Bp能够抑制肠癌的发展,并活化CD 8+ T细胞。进一步研究发现,Rg和Bp处理后能够显著改变组织代谢微环境。对上调和下调的代谢物类型进行分析后,发现Rg和Bp处理能够显著下调肿瘤微环境中的甘油磷脂水平。进一步的体外和体内实验证明Rg和Bp能够通过降解组织微环境中的溶血甘油磷脂从而促进CD 8+ T细胞的肿瘤免疫监视功能,从而抑制结肠癌的发展。综上,本研究揭示了肠道共生菌调控肿瘤免疫监视的重要功能和作用机制(图1)。

      中国科学院微生物所王硕研究组博士生张旭昇、於逗和解放军总医院博士生吴迪为本文共同第一作者,中国科学院微生物所王硕研究员、北京大学基础医学院夏朋延研究员和四川大学华西医院陈亿教授为本文的共同通讯作者。本项研究得到了科技部国家重点研发计划、中国科学院战略性先导科技专项(B类)、国家自然科学基金和中国科学院青年创新促进会等基金项目的资助。

      全文链接:https://www.cell.com/cell-host-microbe/fulltext/S1931-3128(23)00038-0

  • 原文来源:http://www.im.cas.cn/xwzx2018/kyjz/202303/t20230310_6692796.html
相关报告
  • 《中国科学院烟台海岸带研究所揭示肠道微生物及其代谢产物辐射防护的机制》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:熊萍
    • 发布时间:2025-08-10
    • 随着核能的发展以及核废水排海等工业事件的频发,电离辐射对人类健康的威胁日益凸显,成为全球高度关注的重大公共卫生问题。肠道微生物及其代谢产物是机体辐射防护的重要调节因子。然而,当前基于肠道微生物的辐射防护干预多侧重于症状缓解,尚未从根本上阐明辐射损伤的分子机制,限制了其预防与治疗效果。近日,中国科学院烟台海岸带研究所李莉莉研究员系统梳理了辐射损伤背景下的肠道微生物动态变化,以及肠道微生物调控辐射损伤的分子机制及干预策略。 辐射可通过诱导DNA双链断裂和活性氧(ROS)产生破坏细胞稳态。该综述系统总结了肠道微生物及其代谢物缓解辐射损伤的三种基本调控机制:(1)通过Wnt/β-catenin和PI3K/AKT/mTOR通路促进肠上皮细胞再生并调控细胞凋亡;(2)经由Toll样受体及NF-κB信号实现免疫调节;(3)通过Nrf2通路缓解氧化应激。这些机制揭示了肠道微生物及其代谢产物在维持基因组稳定性和氧化还原稳态中的关键作用。 在辐射防护中,微生物靶向干预策略主要包括:益生元补充、精准益生菌制剂、后生元递送,以及噬菌体疗法、营养干预和工程化微生物等新型辅助手段。相较于传统治疗方法,基于微生物组的干预策略具有毒副作用小、治疗时间窗口灵活、多信号通路协同调控以及多靶点药理学效应等优势。该团队最新研究发现,肠道微生物代谢产物吲哚-3-乙醇可通过“罗斯氏菌属-吲哚-3-甲醇/IL-17A”信号轴缓解放射性肠炎,从而恢复结肠组织结构完整性并重建肠道微生态的代谢平衡(Zhong et al.,2025,Journal of Microbiology and Biotechnology)。这些研究为辐射损伤的精准防护提供了新的理论依据和策略支持。 相关论文: Li,L.;Yang,Z.;Yi,Y.;Song,Y.;Zhang,W. Gut microbiota and radiation-induced injury: mechanistic insights and microbial therapies. Gut microbes. 2025,https://doi.org/10.1080/19490976.2025.2528429 Zhong,H.;Song,Y.;Hu,S.;Zhang,C.;Li,L. Metagenomics-metabolomics reveals the alleviation of indole-3-ethanol on radiation-induced enteritis in mice. Journal of microbiology and biotechnology. 2025
  • 《微生物所研究团队揭示CRISPR护卫RNA的全新生理功能》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-09-06
    •  2023年9月1日,中国科学院微生物研究所李明和向华研究团队合作在Cell Host & Microbe期刊上发表题为“Widespread RNA-base cas regulation monitors crRNA abundance and anti-CRISPR proteins”的文章,揭示了CRISPR护卫RNA的全新生理功能。   细菌CRISPR-Cas免疫系统由CRISPR结构和Cas蛋白组成,而Cas蛋白的表达如何适应时刻变化的CRISPR结构和crRNA表达量是该领域长期悬而未决的基本科学问题。   2021年,微生物所研究团队报道了CRISPR的护卫RNA元件即一对受CRISPR-Cas调控的双RNA型毒素-抗毒素系统,命名为CreTA (CRISPR-regulated toxin-antitoxin)(Science. 372(6541):eabe5601)。近期研究发现,抗毒素CreA不仅指导Cas蛋白抑制毒素creT基因的表达,使菌体细胞对Cas蛋白“成瘾”(一旦Cas蛋白被失活或抑制,毒素将表达杀死菌体),而且能够介导Cas蛋白的自抑制调控回路,从而有效避免Cas蛋白过度表达导致的能量负担和自免疫风险(靶向自身DNA)。通过生物信息学分析,团队发现CreA的类似分子(由于大多缺乏偶联的CreT毒素,因此称为Cas-regulating RNA,即CreR)广泛存在于Class 1和Class 2的CRISPR系统中(主要是I型和V-A型)。这些CreR(或CreA)分子介导的Cas蛋白自调控回路不仅可以感应胞内crRNA的浓度,实现两者的协调表达,而且能够有效感应噬菌体携带的anti-CRISPR(Acr)蛋白,从而快速激活Cas蛋白的高水平表达,以应对Acr的攻击。这一发现不仅从全新视角阐释了CRISPR-Cas如何协调crRNA和 Cas 蛋白的表达这一领域内基本科学问题,而且揭示了一种作用于转录水平的anti-anti-CRISPR新策略。   中国科学院微生物研究所博士研究生刘超、博士后王锐、程飞跃、舒宪和李洁副研究员为该论文的并列第一作者,李明研究员和向华研究员为该论文的共同通讯作者。该研究得到了国家自然科学基金、中国科学院战略性先导科技专项、中国科学院青年创新促进会和中国博士后科学基金等项目的经费支持。   原文链接:https://doi.org/10.1016/j.chom.2023.08.005