《Nature丨揭示新型anti-CRISPR蛋白的作用机理》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-07-07
  • 2024年7月3日,加拿大多伦多大学的Alan Davidson研究团队和中国科学院生物物理研究所的王艳丽研究团队合作在Nature上发表题为An anti-CRISPR that pulls apart a CRISPR–Cas complex的研究论文,发现了一种新型anti-CRISPR蛋白——AcrIF25,能够通过解离I-F型CRISPR-Cas复合体(Csy复合体)的方式抑制CRISPR-Cas系统的活性,为CRISPR-Cas系统的精确控制提供了新的思路。

    在I-F型CRISPR-Cas系统中,效应复合体称为Csy复合体,由CRISPR RNA (crRNA) 和4种 Cas 蛋白组成。Cas5和Cas8形成异二聚体与crRNA 5'端结合,Cas6与crRNA 3'端的发卡结构结合,六个Cas7亚基沿着crRNA中间排列组成复合体的骨架结构。Csy复合体特异性识别外源核酸,并招募Cas3核酸酶将其降解。目前,已知的大多数I-F型Acr蛋白通过直接与Csy复合体结合,从而抑制CRISPR-Cas系统。

    在该研究中,研究人员首先通过生物信息学的方法鉴定出了一种新的anti-CRISPR蛋白,命名为AcrIF25。噬菌斑实验显示,AcrIF25能够显著抑制铜绿假单胞菌I-F型CRISPR-Cas系统的活性。为了确认AcrIF25是否能够直接结合Csy复合体,研究人员将纯化的AcrIF25 与Csy复合体混合并进分子排阻凝胶层析。令人惊讶的是,AcrIF25没有与完整的Csy复合体结合,而是与其中的Cas7亚基结合,并将Cas7从完整的Csy复合体中分离出来,留下Csy复合体的其余组分(Cas5、Cas6、Cas8 和 crRNA)。

    为了进一步阐明AcrIF25作用机制,研究人员解析了AcrIF25以及Cas7:AcrIF25复合体的晶体结构。AcrIF25的N端结构为典型的RHH折叠,C端由5个α-螺旋形成螺旋束。AcrIF25的C端结构域与Cas7形成大面积的相互作用,通过分析完整 Csy 复合体中两个相邻 Cas7 亚基与 crRNA 之间的相互作用,研究人员发现 AcrIF25结合Cas7的区域覆盖了Csy 复合体中相邻Cas7之间的结合界面以及Cas7与crRNA的结合界面,AcrIF25正是通过结合这些关键位置从而阻止Cas7与其他Cas7亚基和crRNA相互作用,进而使得整个复合体解体。这种“拆除”效应使得CRISPR-Cas系统无法有效地识别并切割外源DNA。

    此外,以前发现的能够解离大分子复合体的蛋白质需要利用ATP 水解提供的能量。而AcrIF25不包含ATP结合或水解相关的结构域,生化实验显示,AcrIF25将Cas7从Csy复合体中解离出来不需要水解ATP提供额外的能量,显示了AcrIF25机制的独特性。

    综上所述,AcrIF25的发现不仅为理解CRISPR-Cas系统的抑制机制提供了新的见解,而且为开发新型的生物技术工具提供了重要的启示。随着对AcrIF25及其类似Acr蛋白的进一步研究,有望开发出更加高效、安全和可控的基因编辑和基因治疗技术。

  • 原文来源:https://www.nature.com/articles/s41586-024-07642-3
相关报告
  • 《美荷研究团队揭示能够切割蛋白的新型CRISPR工具的作用机制》

    • 来源专题:生物安全网络监测与评估
    • 编译者:闫亚飞
    • 发布时间:2022-11-25
    • 据生物谷网8月29日消息,美国康奈尔大学和荷兰代尔夫特理工大学研究团队开发出一个gRNA引导靶向的CRISPR偶联的蛋白酶新系统“Craspase”。受靶向RNA激活的蛋白酶可对天然的蛋白底物Csx30以及工程化的多肽片段进行特异切割并诱导细胞死亡。该研究阐明了gRAMP和Craspase的作用机制,为后续gRAMP介导的RNA编辑工具及Craspase介导的可调控、选择性激活的蛋白酶系统的开发及优化提供了分子水平的理论依据。该工具有望引领全新的精准医疗思路。相关研究成果发表于Science期刊。
  • 《Nature:揭示Shieldin蛋白复合物在DNA修复中起关键性作用》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-07-22
    • 在一项新的里程碑研究中,来自加拿大多伦多大学、英国伦敦癌症研究所、荷兰癌症研究院和瑞士伯尔尼大学的研究人员分析了乳腺癌细胞和携带着BRCA1基因突变的小鼠。他们利用前沿的CRISPR/Cas9基因操纵技术寻找导致癌细胞对PARP抑制剂药物奥拉帕尼(olaparib)和talaoparib以及铂类化疗药物顺铂(cisplatin)产生耐药性的基因突变。 通过一番艰苦的实验,这些研究人员能够找出导致耐药性产生的关键性基因突变,这些突变对哪些蛋白产生影响,并揭示出这些蛋白在细胞中发挥的作用。他们发现细胞中的一种全新的蛋白复合物能够保护断裂DNA的末端并且控制着这种断裂DNA的修复方式,而且这种被命名为Shieldin的蛋白复合物由新鉴定出的蛋白SHLD1、SHLD2和SHLD3组成。 当保持完整时,这种新发现的Shieldin复合物通过结合到断裂DNA上,促进癌细胞试图以一种让它们对PARP抑制剂和铂类化疗药物敏感的方式修复它们的DNA。 这些研究人员发现在健康的细胞中,这种复合物附着在断裂DNA的末端上,因此这种断裂DNA的“平端(blunt end)”必须被直接地连接在一起,这是一种更快更麻烦的DNA修复方法,而且它有时也是在免疫反应期间制造合适类型的抗体所必需的,因此,当这种蛋白复合物发生突变时,它能够导致免疫相关疾病。 当将突变引入到这种Shieldin复合物的组分中时,这会阻止这种复合物形成和也会阻止它保护断裂DNA的末端,这样细胞能够通过不同的方法自由地修复DNA,这就意味着PARP抑制剂不再是有效的。具体而言,他们发现,当这种突变被引入时,在实验室培养的和小鼠体内的癌细胞利用一种替代的方式修复DNA,并且快速地对PARP抑制剂产生耐药性。 PARP抑制剂是一类非常有前途的药物,这是因为它们利用了一些癌症的一种主要的弱点---癌细胞利用一种对PARP抑制剂敏感的修复方法修复它们的DNA。而且基于这种脆弱性,传统的铂类化疗药物也正在以一种更加针对性的方式加以使用。 PARP抑制剂药物奥拉帕尼在美国和欧洲被批准用于治疗具有BRCA突变的卵巢癌和乳腺癌,并且看起来有望治疗一些前列腺癌,因此如果经证实Shieldin复合物发生的突变导致临床治疗失败,那么这项研究的结果可能对癌症治疗产生广泛的影响。