《Science:针对刺突蛋白的新发现揭示了新冠病毒感染人细胞的能力》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2020-08-23
  • 在SARS-CoV-2感染初期,这种病毒利用它的表面上的刺突蛋白(S蛋白)附着到人体细胞上。S蛋白是疫苗研发的核心,这是因为它能触发人体免疫反应。在一项新的研究中,来自德国马克斯-普朗克生物物理学研究所(MPI)、欧洲分子生物学实验室(EMBL)、保罗-埃里希研究院(Paul-Ehrlich-Institut,PEI)和法兰克福歌德大学等研究机构的研究人员着重关注这种病毒的表面结构,以获得可用于开发疫苗和治疗感染患者的有效疗法的新见解。相关研究结果于2020年8月18日在线发表在Science期刊上,论文标题为“In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges”。

    这些作者结合低温电子断层扫描(cryo-electron tomography, cryo-ET)、子断层扫描图平均化(subtomogram averaging)和分子动力学模拟,在近原子分辨率下分析了S蛋白在它的自然环境中、完整病毒颗粒上的分子结构。利用EMBL最先进的低温电镜成像设备,他们生成了大约1000个SARS-CoV-2病毒的266幅低温电子断层扫描图,每个病毒表面平均携带40个S蛋白刺突。子断层扫描图平均化和图像处理,再结合分子动力学模拟,最终提供了关于这些S蛋白刺突的重要和新的结构信息。

    这些结果令人吃惊:他们的数据显示,S蛋白的球状部分,包含受体结合区域和与靶细胞融合所需的区域,而且这个球状部分连接到一个柔性的茎区域。论文共同通讯作者、EMBL小组负责人、MPI主任Martin Beck解释道,“S蛋白刺突的上部球状部分具有用于疫苗开发的重组蛋白很好重现的结构。然而,我们关于茎区域将S蛋白的球状部分固定在病毒表面上的发现是新的。”

    论文共同通讯作者、法兰克福歌德大学生物物理学研究所的Gerhard Hummer补充道,“预计这个茎区域是非常刚性的。但在我们的计算机模型和实际图片中,我们发现这个茎区域是非常柔性的。”通过结合分子动力学模拟和低温电子断层扫描,他们确定了三个关节--髋关节、膝关节和踝关节--这三个关节赋予了茎区域的柔性。

    论文共同通讯作者、保罗-埃里希研究院主任Jacomine Krijnse Locker解释道,“就像绳子上的气球一样,这些S蛋白刺突似乎在SARS-CoV-2病毒表面上移动,因此能够寻找ACE2受体以便附着到靶细胞上。”

    为了防止感染,这些S蛋白刺突可由抗体加以靶向。然而,这些图片和模型还显示,整个S蛋白,包括它的茎区域,都覆盖着聚糖(glycan)链。这些聚糖链提供了一种保护性的外层,从而让这些S蛋白刺突免受中和抗体的攻击:这是研制有效疫苗和药物的另一个重要发现。

  • 原文来源:https://science.sciencemag.org/content/early/2020/08/17/science.abd5223;https://phys.org/news/2020-08-sars-cov-protein-virus-ability-infect.html
相关报告
  • 《Science:发现新冠病毒S蛋白的一个亚油酸结合口袋,为开发阻止这种病毒感染的药物奠定基础》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-09-26
    • 新型冠状病毒SARS-CoV-2导致2019年冠状病毒病(COVID-19),如今正在全球肆虐。在一项新的研究中,来自英国布里斯托大学等研究机构的研究人员发现SARS-CoV-2刺突蛋白(S蛋白)中的一个可用于阻止这种冠状病毒感染人体细胞的药物可靶向口袋(druggable pocket,即这个S蛋白中的口袋可通过药物进行靶向结合)。他们表示,这些发现可能有助于战胜当前的COVID-19流行病,而且靶向这个新发现的口袋的小分子抗病毒药物可能有助于消除这种疾病。相关研究结果于2020年9月21日在线发表在Science期刊上,论文标题为“Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein”。论文通讯作者为布里斯托大学的Christiane Schaffitzel教授和马克斯-普朗克布里斯托最小生物学中心的Imre Berger教授。 SARS-CoV-2病毒表面装饰着多个拷贝的S蛋白。S蛋白在这种病毒感染中起着至关重要的作用。S蛋白与人体细胞表面结合,使得这种病毒能够进入宿主细胞并开始复制,从而造成广泛的损害。 在这项突破性的研究中,这些研究人员使用了一种强大的成像技术--电子低温显微镜(cryo-EM),以近原子分辨率分析了SARS-CoV-2 S蛋白。在甲骨文公司(Oracle)高性能云计算的支持下,他们生成了SARS-CoV-2 S蛋白的三维结构,这样他们能够深入到S蛋白的内部,从而识别它的分子组成。 出乎意料的是,这些研究人员的分析发现在S蛋白内的一个特制的口袋里,埋藏着一个小分子---亚油酸(LA)。LA是一种游离脂肪酸,是许多细胞功能不可或缺的物质。人体不能产生LA。相反,身体通过饮食吸收这种必需的分子。耐人寻味的是,LA在炎症和免疫调节中起着至关重要的作用,而这两者都是COVID-19疾病进展的关键因素。LA还能够维持肺部中的细胞膜,以便我们能够正常呼吸。 Berger教授说,“我们真地对我们的发现及其意义感到困惑。LA在COVID-19患者体内失去控制的许多功能中起着核心作用,这种失去控制会造成可怕的后果。根据我们的数据,正是这种病毒造成这一切混乱,它紧紧抓住了这种分子,从而基本上解除了人体的大部分防御能力。” Schaffitzel教授解释道,“从其他疾病中,我们知道,改变LA代谢途径可以引发系统性炎症、急性呼吸窘迫综合征和肺炎。这些病理症状在患有严重COVID-19的患者中都能观察到。最近一项针对COVID-19患者的研究显示,这些患者血清中的LA水平明显降低。” Berger教授补充道,“我们的发现首次揭示了LA、COVID-19病理表现和这种病毒本身之间存在直接的关联性。如今的问题是如何将这种新知识转化为抵抗这种病毒本身,并战胜这种流行病。” 人们有理由抱有希望。在引起普通感冒的鼻病毒中,人们利用类似的口袋开发出了强效的小分子,这些小分子与这个口袋紧密结合,扭曲了鼻病毒的结构,从而阻止了它的感染性。这些小分子在人体临床试验中被成功用作抗病毒药物,在临床上战胜了鼻病毒。在这项新的研究中,这些研究人员根据他们的数据,乐观地认为,现在可以采取类似的策略来开发针对SARS-CoV-2的小分子抗病毒药物。 Schaffitzel教授说,“COVID-19继续造成大范围的破坏,在缺乏有效的疫苗的情况下,我们还必须寻找其他方法来对抗这种疾病。如果我们看一下HIV病毒,经过30年的研究,最后起作用的是一种抑制这种病毒的小分子抗病毒药物混合物。我们在SARS-CoV-2 S蛋白内发现了一个药物可靶向的口袋,这可能会导致人们开发出新的抗病毒药物,以便在这种冠状病毒进入人体细胞之前就将抑制和消灭它,牢牢地阻止病毒感染。”
  • 《Science:揭示基因CIITA诱导人细胞抵抗埃博拉病毒和SARS样冠状病毒感染机制》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-08-28
    • 在一项新的研究中,来自美国弗吉尼亚梅森大学贝纳罗亚研究所、凯斯西储大学、波士顿大学医学院和MRIGlobal公司的研究人员发现了一种新的细胞保护途径,该途径靶向几种不同大流行病毒中的共同弱点。他们发现这种途径可以保护细胞免受埃博拉病毒和诸如SARS-CoV-2之类的冠状病毒感染。这些新发现使得人们更好地理解参与抵抗病毒感染的细胞机制,从而为治疗未来病毒性传染病提供参考。相关研究结果于2020年8月27日在线发表在Science期刊上,论文标题为“MHC class II transactivator CIITA induces cell resistance to Ebola virus and SARS-like coronaviruses”。 这项研究阐明了所发现的两个基因的全新作用,以及抑制病毒融合和进入人体细胞的独特方法,这使得我们离下一代抗病毒疗法更近了一步。这些研究人员利用转座子介导的基因激活筛选方法,寻找可以阻止埃博拉病毒感染的新基因。 这种新的筛选策略可作为发现针对其他危险病原体的抵抗机制的蓝本。利用这种策略,这些研究人员发现了基因CIITA(MHC class II transactivator,MHCII类反式激活蛋白)通过激活第二个基因CD74的表达,诱导人细胞系产生抵抗力。作为CD74的一种形式,p41破坏了称为组织蛋白酶(Cathepsin)的细胞蛋白酶对埃博拉病毒蛋白外壳上的蛋白的加工。这可以阻止这种病毒进入细胞和感染。p41还会阻断包括SARS-CoV-2在内的冠状病毒的组织蛋白酶依赖性进入途径。 论文通讯作者、弗吉尼亚梅森大学贝纳罗亚研究所首席研究员Adam Lacy-Hulbert博士说,“发现这些新的细胞保护途径对于理解我们如何破坏或改变病毒感染周期以触发更好地抵抗诸如埃博拉病毒和SARS-CoV-2之类的病毒是非常重要的。我们的新策略有助于我们找到传统基因筛查所忽略的机制。” 这些发现说明了以前被认为参与更传统的T细胞和B细胞介导的免疫反应的基因的新作用。比如,CIITA被理解为对免疫细胞之间的沟通非常重要,但之前并没有将它视为细胞抵御病毒感染的一种方式。 论文共同第一作者、凯斯西储大学病理学讲师Anna Bruchez博士说,“作为一名病毒学家,我感到兴奋的不仅是这对埃博拉病毒的意义,还有对其他病毒更广泛的影响。包括冠状病毒在内的许多病毒都使用组织蛋白酶来帮助它们感染细胞。幸运的是,当SARS-CoV-2出现时,我最近搬到了凯斯西储大学,并能够利用它的专业BSL3实验室来证明CD74途径也阻止了这种病毒的内体进入。因此,这种抗病毒机制可以对抗许多不同的病毒。” 论文共同作者、弗吉尼亚梅森大学贝纳罗亚研究所研究员Lynda M. Stuart博士说,“我们真地不了解阻断病毒感染的细胞机制,这限制了我们有效应对流行病的能力,包括今年的新冠冠状病毒疫情。我们真地需要能够阻断所有病毒的疗法,包括未知的未来病原体。要做到这一点,我们需要找到病毒攻击的共同途径,然后开发阻止这些漏洞的方法。我们的研究展示了一种可以通过改造细胞来实现这一点的方法,我们希望我们的新见解将为科学家门开发治疗方法和干预措施开辟新的途径,以治疗影响全世界数百万人生活的病毒性传染病。”