《研究揭示"撞墙期"科学原理》

  • 来源专题:高校动态信息监测平台
  • 编译者: xuwenwhlib
  • 发布时间:2017-05-11
  • . 研究揭示"撞墙期"科学原理。 我要分享新浪微博微信 QQ好友人人网文章来源︰ 中国科学报张章发布时间:2017-05-10 字号︰ 小中大跑步者、游泳者和自行车手对"撞墙期"现象十分熟悉。近日,研究人员在《细胞 — — 代谢》期刊上报告了这种现象产生的生理学基础。该研究还发现,训练并非提高耐力的唯一方法使用一种小分子刺激一个训练激活通路也能达到目标。   "当你的大脑无法获得足够葡萄糖时就会出现' 撞墙期' 即觉得无法继续运动了。之前我们认为能通过训练改善人的有氧耐力。"论文共同作者、美国沙克生物医学研究所研究员Ronald Evans说。   Evans团队之前发现一个名为PPARδ的转录因子也能激活当运动员通过训练增加耐力时激活的通路。研究人员证明了这种新陈代谢变化既依赖于PPARΔ 也能被分子激活。   在最初实验里,他们敲除了小鼠肌肉中的PPARΔ 并研究了效果。研究人员让小鼠在跑步机上跑步结果发现这个通常由运动触发的基因未能被触发。这表明PPAR...

相关报告
  • 《Science | 转录组细胞结构揭示了人类新皮层组织的原理》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2023-10-14
    • 2023年10月13日,艾伦脑科学研究所的研究人员在Science 上发表了题为Transcriptomic cytoarchitecture reveals principles of human neocortex organization 细胞结构的变化是皮层区组织学定义的基础。该研究使用单细胞转录组学并对人类皮层进行细胞表征,以更好地了解皮层区域特化。 跨越皮质结构变异的8个区域的单核RNA测序显示24个细胞亚类的细胞组成高度一致。然而,兴奋性神经元亚类的比例差异很大,可能反映了初级感觉运动皮层和关联皮层之间连通性的差异。星形胶质细胞和少突胶质细胞的层状组织在不同区域也存在差异。初级视觉皮层表现出特有的组织结构,兴奋性神经元与抑制性神经元的比例、第4层兴奋性神经元的扩张和特化的抑制性神经元发生了重大变化。这些结果为人类皮层细胞结构和区域特化的精细细胞和分子表征奠定了基础。 本文内容转载自“ CNS推送BioMed”微信公众号。 原文链接: https://mp.weixin.qq.com/s/IwI13twn10xlGUJsNbQekg
  • 《研究揭示大西洋参与全球环流的秘密》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:mall
    • 发布时间:2018-12-28
    • 由牛津大学地球科学系的Batenburg博士带领的科学家团队,通过对大西洋两个地区深海沉积物样品的钕(Nd)同位素特征的比较,发现北大西洋和南大西洋之间的水交换在五千九百万年前突然增多。他们的研究成果发表在2018年11月23日的《Nature Communications》期刊上。该研究揭示,活跃的环流加上大气中二氧化碳气体的增加,使得热量在地球上分布得更加均匀,一个长期的冷却阶段结束了,世界进入了一个新的温室时期。 Nd同位素被用作水团及其混合物的示踪剂。地表水通过河流和被风吹拂的尘埃获得Nd同位素,当地表水下沉形成深水团块时,深水团携带着它们特有的Nd同位素。当水团流经海洋并与其他水体混合时,其Nd同位素特征被纳入沉积物中,深海沉积物是海洋环流和历史气候的宝贵档案。本文揭示的故事开始于白垩纪末期(6600万年前),当时世界处于两个温室状态之间。自从大约9000万年前白垩纪中期的温室条件达到巅峰以来,气候已经冷却了数千万年。尽管经过长期的冷却,但白垩纪末期的温度和海平面仍高于现在。 大西洋形成初期,南北大西洋盆地比今天更浅更窄。在白垩纪晚期,南美洲和非洲之间的通道只允许浅水和表层水的通过,活火山的活动形成了水下山脉和高原,阻碍了深海环流。在南大西洋,沃尔维斯山脊屏障形成于一个活跃的火山热点之上,这一海脊部分高于海平面,形成了深水团流动的屏障。当大西洋继续开放时,洋壳冷却并下沉,洋盆变深变宽,海底高原和山脊连同地壳一起下沉,在某时来自南大洋的深水团能够向北流过沃尔维斯海脊,贯穿大西洋盆地的较深处。 Batenburg博士说:“我们的研究首次确定了深海连接是怎么形成以及何时形成的。论文的另一位作者Frank博士补充说:“在5900万年前,大西洋真正成为了全球温盐环流的一部分。温盐环流连接着五个主要大洋中的四个。”从5900万年前开始,来自北大西洋和南大西洋的Nd同位素特征非常相似。推测认为是一个来自南部的深水团穿越大西洋,由深部向浅部穿越洋盆。深海交换作用的加强,以及大气中二氧化碳的增加,使地球上的热量分布更加有效。 (刘思青 编译)