《科学家在单量子点中观测到光子束缚态》

  • 来源专题:量子信息科技
  • 编译者: 于杰平
  • 发布时间:2023-04-25
  • 2023年3月20日,由澳大利亚悉尼大学和瑞士巴塞尔大学联合主导的研究团队首次演示了对具有高度关联性的少量相互作用光子态的操纵和识别。该成果于3月20日发表在《自然·物理学》杂志上。 悉尼大学和巴塞尔大学的联合研究团队恰好利用了光学非线性过程实现了光子之间的相互作用。他们选择了一个与光学谐振腔耦合的半导体量子点,即人造原子作为实验系统。该文章共同第一作者Natasha Tomm提到:我们造的系统在光子之间可诱发非常强烈的相互作用“以至于我们能够观察到该系统与一个光子、或两个光子相互作用的区别,我们观察到。与两个光子相比,一个光子被延迟的时间更长,在这种真正强大的光子-光子相互作用下。两个光子以所谓的双光子束缚态的形式纠缠在一起,这便是单光子的受激辐射的特征。 通过证明对光子束缚态的识别和操纵”该团队向量子光的实际用途迈出了重要一步。这种量子光的优势在于,原则上可用较少的光子进行更灵敏的测量。并具有更高的分辨率,Tomm说,我们可以利用同样原理开发更高效率设备来获得束缚态。其在生物学、先进制造和量子信息处理等广泛领域中都非常有应用前景。


    论文链接:

    https://www.nature.com/articles/s41567-023-01997-6

    报道链接:

    https://phys.org/news/2023-03-scientists-door-quantum.html


相关报告
  • 《中国科学家首次观测到化学反应中的“日冕环”现象》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-08-01
    •         近日,中国科学技术大学王兴安教授和我所孙志刚研究员、张东辉院士、杨学明院士合作,首次利用自主发展的目前最高分辨率的交叉分子束离子成像技术,观测到了化学反应散射中日冕环的现象,并结合量子分子反应动力学理论分析,首次揭示了该现象所隐藏的反应动力学机理。该研究成果发表在《自然化学》(Nature Chemistry)上。   当大气中的微小水滴被阳光照射时,如果气象条件良好,人们可以在太阳周围观察到一系列美丽的光环,大气光学中称之为日冕环。大气光学的研究表明,这一自然现象的产生源于光在水滴表面前向衍射所产生的光干涉图像。就物理角度而言,其产生的原理与著名的杨氏双狭缝干涉现象极为类似,均是由光量子的波动特性而产生的干涉现象。更值得一提的是,日冕环的结构可帮助人们直接分析推测出空气中水滴的大小。         与大气光散射相似,气相化学反应从严格意义上来说是原子与分子的散射过程,比较独特的是,在这一散射过程中伴随着旧化学键的断裂和新化学键的形成。反应产物的空间散射结构,直接反映了化学反应进程的微观机制。因此,对分子态-态分辨的散射动力学的研究是深入理解气相分子反应机理的重要方法。近年来,速度成像技术逐渐成为研究化学反应机理的重要实验方法。为了能够更加准确的获得反应态-态信息,研究人员一直致力于提高成像实验的分辨率。   王兴安和杨学明领导的团队自主研制了一台独特的结合阈值激光电离技术以及速度成像技术的交叉分子束反应动力学研究装置,使得实验上获得的H原子产物的速度分辨率达到了世界上同类仪器的最好水平。利用这一装置,研究小组开展了对化学中最经典的H+HD→H2+D反应的实验动力学研究。他们首次测得了这一反应产物全量子态分辨的产物速度影像,并且在实验上首次观测到了反应前向散射产物中存在的角分布振荡现象。孙志刚和张东辉等人通过精确量子动力学分析,发现这一角分布振荡现象其实是由散射过程中的少数几个分波散射的角分布结构引起的。通过对这些振荡结构的测量和分析,我们可以了解到引起前向散射的反应过渡态和中间体的大小,也可以知道这些前向振荡结构是具体来源自哪几个散射分波。通过他们的研究发现,这些在化学反应中首次发现的前向散射振荡结构在三维散射图像中与大气光学中观测到的日冕环的散射图像非常相似:通过观测光与水滴的日冕环散射,我们可以了解自然界中的水滴的大小;而通过观测化学发应中的前向角分布振荡结构,我们可以清晰地研究化学反应的过渡态结构以及动力学。         这项研究工作得到了国家自然科学基金科学中心项目和中国科学院战略先导项目(B类)的支持。
  • 《科学家在实空间首次观测到磁浮子》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-08-01
    •         近日,中国科学院合肥物质科学研究院强磁场科学中心田明亮课题组研究员杜海峰和德国尤利西研究中心教授R. E. Dunin-Borkowski团队及Nikolai S. Kiselev领导的小组形成的合作研究团队,利用电子全息技术在准二维螺旋磁性材料FeGe纳米结构中实验发现一种称之为“磁浮子”的新型三维局域磁结构,相关成果以Experimental observation of chiral magnetic bobbers in B20-type FeGe 为题发表在期刊《自然-纳米技术》(Nature Nanotechnology)上。   二进制是计算技术中广泛采用的一种数制,是整个数据存储的基础。二进制数据是用“0”和“1”两个数码来表示的数。在具体的物理载体中,“0”和“1”是利用物理实体两个可操控的物理态来实现的,如计算硬盘中磁畴的两个磁化方向。2009年德国科学家在一类螺旋磁性材料中发现了一种具有粒子特性的拓扑磁结构,即磁斯格明子(Skyrmion)。斯格明子具有尺寸小、稳定性高和易操控等系列特点,从而可以作为基本的数据比特来构建未来高密度、高速度、低能耗磁存储器。但是长久以来,斯格明子被认为是此类材料中唯一存在的局域磁结构,因此只能作为二进制数据比特中的“1”或“0”一个,可以利用铁磁态作为另一个数据比特的载体。但是,由于斯格明子本身是存在于铁磁背景中,热扰动等外部因素会使斯格明子发生漂移,从而引起实际信息存储中的紊乱。通过在磁存储单元间构造人工缺陷能够限制斯格明子的无序运动,但无疑会增加器件设计的复杂性与成本。   磁拓扑态之间的相互作用可以有效抑制它们的自发漂移,然而,同一种磁拓扑态结构,如磁斯格明子,很难实现“0”和“1”不同数据比特的分辨。因此,寻找新型局域的磁结构是解决该难题的主要途径。2015年,德国科学家首先理论预言在一定厚度的螺旋磁性材料中还存在一种磁结构——手性磁浮子 (Magnetic Chiral Bobber)。磁浮子是漂浮在材料表面的一种新型局域磁结构,可以取代铁磁态作为数据比特“0”应用到存储器设计中,这种新设计可以安全避免额外的构造人工缺陷等工艺,具有结构简单和成本低的优点。   在该工作中,强磁场中心团队利用聚焦离子束技术制备了高质量的纳米结构样品,通过和德国尤利西合作团队多次实验摸索,在FeGe纳米材料中利用电子全息技术首次在实空间中直接观测到磁浮子,并且进一步发现磁浮子可以与斯格明子共存。该研究结果不仅扩展了手性磁体中拓扑磁结构的范围,也为相关的器件设计提供了很好的基础。   该工作中杜海峰和Nikolai S. Kiselev作为论文的共同通讯作者。   该研究工作受到国家重点研究计划专项基金、中国科学院重点部署项目、国家自然科学基金、中国科学院青年促进会等经费资助。