《中国科学院苏州纳米所在石墨烯气凝胶领域取得重要进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2019-05-10
  • 墨烯气凝胶,经由石墨烯片层三维搭接、组装而来的石墨烯宏观体材料,具有三维连续多孔网络结构,表现出高比表面积、高孔隙率、优异导电性能及电化学行为,在能源存储、传感、吸附、复合材料等领域有重要应用前景。然而,目前常规石墨烯气凝胶的三维组装以石墨烯片层间的 “面 - 面”局部搭接方式为主,进而形成具有三维无规连续多孔网络。石墨烯片层间的这种“面 - 面”堆垛 - 搭接方式,是一种无规、随机组装,往往会使得部分石墨烯片层形成类石墨结构,造成石墨烯本征性能(如比表面积、力学、电学等)损失。此外,传统石墨烯气凝胶所具有的这种无规三维多孔网络还引入高界面电阻及曲折离子通道问题,对电化学行为中的电荷 - 离子传输及有效电化学活性面积维持带来负面影响,成为制约石墨烯材料在电化学能源器件中应用的瓶颈。因此,如何设计新的石墨烯组装策略,制备高性能石墨烯气凝胶材料,仍是一个重要挑战。   针对石墨烯气凝胶目前存在的问题,中国科学院苏州纳米技术与纳米仿生研究所张学同研究员领导的气凝胶团队通过 “局部氧化刻蚀”在氧化石墨烯片层上进行造孔,获得孔洞氧化石墨烯,随后将孔洞氧化石墨烯与还原剂分散液高度浓缩,实现其液晶化,进一步经原位溶胶凝胶及超临界干燥获得各向异性“孔洞石墨烯”气凝胶,如图 1 所示。所得各向异性“孔洞石墨烯”气凝胶由孔洞石墨烯片层经有序排列而成,表现出规整的三维多孔网络(规整的孔道 / 孔壁及孔壁上的大量微孔)、低密度( 42-55 mg cm -3 )、高导电性( ~165 S m -1 )、高比表面积( 537~837 m 2 g -1 )等诸多优点。最后将该气凝胶作为电极材料,辅以共晶混合物 “水 - 甲酰胺”作为低温电解液,构建出可在温度低至零下 40 ° C 的环境中正常工作的柱状低温热电化学池,表现出低离子传输阻力( 15.7 Ω )及高输出功率( 3.6 W m -2 )。当 15 个热电化学池进行串联组装成器件时,可实现 ~2.1 V 电压的稳定输出,在低温能源器件应用中表现出重要应用前景。   相关成果以 “ High-Ef fi ciency Cryo-Thermocells Assembled with Anisotropic Holey Graphene Aerogel Electrodes and a Eutectic Redox Electrolyte ”为题发表在国际著名期刊《先进材料》( Advanced Materials , 2019 , 1901403 )上。博士生李广勇、硕士董大鹏及澳门大学洪果教授为论文共同第一作者,张学同研究员与英国 UCL 的宋文辉教授为论文共同通讯作者,合作者还包括中国科技大学的闫立峰教授。论文工作获得了国家重点研发计划、国家自然科学基金委、英国皇家学会 - 牛顿高级学者基金等资助。   

相关报告
  • 《苏州纳米所在石墨烯气凝胶智能纤维领域取得重要进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-06-21
    • 智能纤维,通常指可感知环境变化或刺激(如光、电、温度、湿度、 pH 、机械等)并能够做出反应的纤维,是智能可穿戴织物中重要的基本组成单元。智能纤维可通过智能织物形式,整合到臂带、袖套、服装、头盔、腰带等部位之中,并作为可穿戴传感器、制动器、能源器件、调温织物及加热器等功能器件的核心单元应用于柔性可穿戴智能系统中。然而,目前大多数织物纤维以天然高分子或合成高分子为主。这些高分子具有本征的热绝缘及电绝缘性能,使其难以与微型化电路进行有机整合,因而不仅限制织物纤维在传统电子器件中的应用,还束缚着新型可穿戴电子器件及智能机器人的发展。此外,如何实现智能纤维在面对复杂环境及人机交互中多重刺激响应的功能集成,依旧是一个重大挑战,也是未来新型多功能智能可穿戴系统发展的重要机遇。   基于智能纤维多重刺激响应的功能集成这一需求,中国科学院气凝胶团队( http://www.aerogel-online.com )将石墨烯气凝胶纤维、相变材料及超疏水涂层巧妙复合,得到一种柔性、自清洁的石墨烯气凝胶智能相变纤维,实现了复合纤维的能源转换与存储、自清洁、智能调温、加热等多重刺激响应功能于一身。具体制备工艺如下:首先通过湿法纺丝工艺,将氧化石墨烯液晶纺入特定凝固浴中,经化学还原 - 超临界干燥等技术手段制备得到具有规整、连续、多孔的石墨烯气凝胶纤维;然后通过浸渍填充,将有机相变材料(如石蜡、聚乙二醇、高级脂肪酸等)引入到气凝胶纤维的多孔网络结构中,获得石墨烯气凝胶相变复合纤维;最后在复合纤维上包裹氟碳疏水涂层,获得具有自清洁功能、多重刺激响应行为的柔性石墨烯气凝胶智能纤维。   研究表明,这种新型的智能纤维具有可调的相变焓值( 0-186 J/g )、优异的力学 / 电学性能、自清洁及多重刺激响应(光、电、温度)的热能转换与存储 / 释放功能,且纤维可被加捻、编织。针对单根纤维、纤维束及织物等形式,分析并探究了复杂环境下的刺激响应行为:当纤维弯曲或打结时,纤维的电热响应行为不受影响,当纤维集结成束时,纤维之间发生热交换,能够减少纤维向环境的热流失,从而表现出更为快速的电热响应及更高的响应温度;纤维织物在室温及低温环境下均具有光 - 热响应行为,且随着纤维织物的密集程度的增加,光热响应具有更快、更高的温度响应。进一步地,通过热电偶及数据记录仪,详细分析了单根纤维、纤维织物的电热、光热响应历程,并详细研究了纤维种类(不同相变材料的纤维混编织物)、纤维织物的密集程度、外部环境(温度、湿度及应力)对热能捕获及释放的影响,实现智能织物的多温度区间的热能存储、释放及调温功能(如图 1 所示)。   通过石墨烯气凝胶纤维、相变材料及氟碳树脂巧妙复合得到的石墨烯气凝胶智能纤维实现了多重刺激响应下的多功能集成,且可再现于纤维加捻而成的纱线及编织成的织物之中,在新一代智能可穿戴织物及便携式电子器件领域具有广阔应用前景。相关研究成果以“ Multiresponsive Graphene-Aerogel–Directed Phase-Change Smart Fibers ”为题,已在线发表在国际著名杂志 Advanced Materials ( 2018, 30, DOI: 10.1002/adma.201801754 )上。   博士生李广勇(北京理工大学与中国科学院苏州纳米所联合培养)为论文第一作者,张学同研究员为论文通讯作者,合作者包括澳门大学洪果教授,英国伦敦大学学院宋文辉教授。该论文工作是在国家重点研发计划( 2016YFA0203301 )、国家自然科学基金( 51572285 )、英国牛顿高级学者基金( NA170184 )和江苏省自然科学基金( BK20170428 )的共同资助下完成的。  
  • 《中国科学院苏州纳米所在纳米水凝胶抗污染油水分离膜材料取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-08-23
    • 在工业生产和人们的日常生活中会产生大量的含油污水。目前,含油污水的处理一直是一个世界性难题,特别是复杂环境下乳化含油污水的处理。利用膜分离技术来实现油水分离被认为是最具有效的分离手段之一,特别是针对乳化的油水体系。然而,传统的膜分离材料在油水分离过程中会遭受严重的污染,导致分离通量以及油水分离效率的急剧下降,严重阻碍了膜分离技术在油水分离领域中的发展和应用。因此,开发新型的分离膜材料,解决分离膜材料的污染问题,是实现油水的高效、快速以及稳定分离的关键所在。 近期,为了解决膜分离材料的抗污染问题,中国科学院苏州纳米技术与纳米仿生研究所靳健研究员课题组在前期工作的基础上,设计和制备了一种磺基甜菜碱型两亲离子性纳米水凝胶接枝改性的PVDF多孔膜(ZNG-g-PVDF)(如图1所示)。这一两亲离子性纳米水凝胶的尺寸~50nm,这一纳米级尺寸有助于纳米水凝胶的快速浸润和吸水,从而赋予了PVDF多孔膜超亲水的性质。由于两亲离子性纳米水凝胶同时具有水凝胶的高保水性能以及两亲离子性聚电解质的强水合能力,能够在PVDF多孔膜的表面构筑出牢固的水合层以及近中性的表面。这一超亲水的近中性表面赋予了PVDF多孔膜在水下对原油近乎零粘附的效果(如图2所示)。此外,磺基甜菜碱型两亲离子性纳米水凝胶具有优异的抗盐性以及耐酸碱性能,保证了两亲离子性纳米水凝胶接枝改性的PVDF多孔膜在不同种类的盐溶液中以及宽泛的pH范围内均能够保持超亲水特性以及水下超低油粘附效果。为了进一步考察这一分离膜材料的抗污染性能,研究人员通过模拟现实的乳化油水,利用这一两亲离子性纳米水凝胶接枝改性的PVDF多孔膜来分离含有表面活性剂、蛋白质以及生物有机质(NOM)的油水乳液并监测其多次循环过程中通量的变化情况。实验结果表明(如图3所示),这一两亲离子性纳米水凝胶接枝改性的PVDF多孔膜具有优异的综合性抗污染能力,循环过程中通量的恢复率几乎高达100%。这一工作所使用的亲水改性策略相对温和、简单,为制备高效油水分离膜材料提供了新的视角。