《JEM:科学家利用“自然系统”识别出了有望开发高效HIV疫苗的特殊蛋白》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2023-06-07
  • 据WHO数据显示,自从1984年确定了引发获得性免疫缺陷综合征(AIDS)的病因以来,人类免疫缺陷病毒(HIV)已经感染了超过8000万人,而且如今已经在全球引发了4000万人的死亡;目前WHO报告表示,全球大约有3800多万人感染了这种逆转录病毒,而且每年还有100万新发感染病例在不断增加,尽管抗逆转录病毒疗法能有效控制HIV,但患者必须坚持服药从而预防AIDS的发生。

    科学家们一直在尝试开发有效的HIV疫苗,但目前并没有取得成功,近日,一篇发表在国际杂志Journal of Experimental Medicine上题为“A cell-free antigen processing system informs HIV-1 epitope selection and vaccine design”的研究报告中,来自约翰霍普金斯大学医学院等机构的科学家们通过研究利用自然系统识别出了有望帮助开发有效HIV疫苗的特殊蛋白。

    文章中,研究人员利用了他们2010年所开发的一种实验室技术复制了一种细胞环境,在该环境中,称之为抗原呈递细胞(APCs)的专门免疫细胞会分解衍生自HIV的蛋白,并使其对免疫系统的前线防御机制可见,即称之为CD4+ T淋巴细胞或辅助T细胞。研究者Scheherazade Sadegh-Nasseri说道,我们的简单方法—还原无细胞的抗原处理技术(reductionist cell-free antigen processing)能在试管中再现人类机体免疫系统所发生的复杂事件,而这些事件是免疫系统对抗原(诸如HIV等机体外来入侵者)的反应。当APC咀嚼来自抗原的蛋白并在其表面呈递名为抗原表位(antigenic epitopes)的片段时,这种抗原表位就会对辅助T细胞可见并且开启机体的免疫反应。

    如果研究人员能识别出哪种抗原表位具有“免疫显性”(immunodominant),即能引起针对病毒的最强烈免疫系统反应,那么他们或许就能拥有长期所寻求配方的必要成分,从而帮助制造有效的HIV疫苗。具有免疫显性的抗原表位拥有独特的结构,就好像锁与钥匙一样会与APCs上的细胞表面蛋白相匹配,即主要组织相容性分子(MHCs)。医学博士Srona Sengupta说道,如果你将HIV表位看作是一个热狗,而MHC看作是一个面包的话,那么大餐就是呈现给CD4+ T细胞的东西;能够识别HIV表位-MHC复合体为外来物的T细胞会被会被激活并向B细胞发送信号,而B细胞是另外一类能产生抗体的机体免疫系统(在这种情况下对HIV具有特异性)。抗体能与病毒结合并破坏已经被感染的细胞或预防HIV进入未感染的细胞,而这或许就是开发有效疫苗的关键功能。

    研究者表示,此前绘制和识别所需的免疫优势表位的努力已经被证明是不可靠的;传统的方法会利用一种“蛮力”系统,即对能代表真实HIV蛋白部分的合成性肽类进行测试,希望某些肽类能刺激机体的免疫反应并指导研究人员找到开发疫苗所需要的抗原表位;这种策略不仅成败在此一举,而且并不允许现实世界的化学和分子相互作用,而这些相互作用可能会影响表位的产生和功能。研究者解释道,这是有效的HIV疫苗策略仍然遥不可及的一个主要原因。Sadegh-Nasseri博士表示,我们的无细胞抗原处理系统能复制表位在APC细胞环境中被实际加工处理以及被呈递的方式,包括任何可能会发挥作用的影响因素等。这或许就能促进研究人员研究整个HIV蛋白质组(病毒所产生的所有蛋白)并明确识别出特殊的表位,而这种表位会被一种称之为HLA-DM的伴侣蛋白选择呈现给CD4+ T细胞;这一点非常重要,因为研究者知道,由HLA-DM所加工处理和编辑的HIV表位是具有免疫显性特征的。

    研究者补充道,最近研究中所识别出的35个抗原表位此前是未知的;本文研究中,研究人员利用无细胞抗原处理系统的分析揭示了三个重要发现:1)所识别出的表位的确是在HIV阳性的个体机体中产生的,而且会导致机体记忆性CD4+ T细胞的发展;2)这种新型的加工处理系统能被用来预测HIV蛋白的哪一部分在产生纳入到新型疫苗的免疫优势表位方面更有优势;3)该系统对全长天然蛋白的使用确保了任何细胞环境影响(比如那些在被感染的宿主细胞产生病毒后所引起的病毒表位修饰),且这些影响都会被考虑在内;当前的分析技术就缺乏这种能力。

    有趣的是,研究人员还识别出了能被糖分子基团所修饰的多个表位,这对于疫苗开发者而言或许是一个潜在的重要发现,但传统的分析或许就会错过这个发现;目前研究人员正在不断研究来完善这种免疫优势表位识别系统,并利用来自未来分析的数据增强疫苗开发者的能力,从而促进其开发出强大且有效的保护性策略来抵御HIV、SARS-CoV-2等多种病原体。

    原始出处:

    Srona Sengupta,Josephine Zhang,Madison C. Reed, et al. A cell-free antigen processing system informs HIV-1 epitope selection and vaccine design, Journal of Experimental Medicine (2023). DOI:10.1084/jem.20221654

  • 原文来源:https://news.bioon.com/article/4dbfe74857a5.html
相关报告
  • 《PNAS & JBC解读!科学家有望开发出治疗SARS-CoV-2和HIV感染的新型有效疫苗!》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-12-21
    • 近日,发表在国际杂志Proceedings of the National Academy of Sciences上题为“A facile method of mapping HIV-1 neutralizing epitopes using chemically masked cysteines and deep sequencing”和国际杂志Journal of Biological Chemistry上题为“Design of a highly thermotolerant, immunogenic SARS-CoV-2 spike fragment”的两篇研究报告中,来自印度科学理工学院等机构的科学家们通过研究开发出了能有效抵御SARS-CoV-2和HIV的新型有效的疫苗策略。此前研究人员报告了设计了一种耐热的COVID-19候选疫苗,以及一种快速的方法,该方法能识别被抗体所靶向作用的HIV包膜蛋白上的特殊区域,而这种抗体则能够帮助科学家们设计出有效的疫苗。 COVID-19候选疫苗包含有称之为受体结合结构域(RBD)的SARS-CoV-2的刺突蛋白的一部分,该区域能帮助病毒吸附到宿主细胞上,当研究人员在豚鼠模型体内进行测试时,他们发现,候选疫苗能够引起宿主产生强烈的免疫反应。令人惊讶的是,这种候选疫苗还能在37度的温度下保持稳定一个月,而冻干的候选疫苗也能够对高达100度的温度耐受;这或许就使得疫苗能够便于储存和运输,而不需要昂贵的冷链设备进行运输就能在偏远地区进行大规模的人群接种。大多数的疫苗需要在2-8度的环境中或更低的温度下储存以免会失去疫苗的作用效力。与诸如mRNA疫苗等新型疫苗类型相比,制作基于蛋白质的疫苗在印度能够很容易扩大规模,因为印度的疫苗制造商们已经制作了几十年类似的疫苗了。 目前研究人员正在研究的候选疫苗还与其它许多正在研发的COVID-19疫苗之间有一个区别,其仅会利用RBD的特定部位,即一串200个氨基酸的序列,而不是整个刺突蛋白。研究人员通过质粒将编码该部分的基因插入到了哺乳动物细胞中,随后细胞就会制造出RBD部分的拷贝,研究者发现,RBD的配方在豚鼠体内引发免疫反应方面与刺突蛋白一样优秀,而且其在高温下也稳定得多,完整的刺突蛋白在50度以上的温度下会很快失去活性。研究者Varadarajan说道,目前我们需要项目资助来将相关研究结果推向临床研究阶段,其中就包括对大鼠进行的安全性和毒理性研究,以及在人体测试之前进行的工艺开发和临床试验,这些研究或许会花费大约10亿卢比。 在第二项研究中,研究人员重点对HIV病毒进行了相关研究,研究人员旨在寻找确定能被中和性抗体所靶向作用的HIV包膜蛋白的关键部位,这些抗体能够阻断病毒进入细胞,而且能很好地对其标记从而被宿主机体其它免疫细胞所发现。基于这些区域的额疫苗或许就能够诱导宿主机体产生更好的免疫反应。为了绘制该区域的图谱,研究人员使用X射线晶体衍射学技术和低温电镜技术,但这些方法耗时、复杂且昂贵,因此研究人员就想寻找其它方法最终得出一种简便但有效的解决方案。 首先他们对病毒进行突变以便称之为半胱氨酸的氨基酸能够在包膜蛋白的几个地方出现,随后研究人员加入了一种化学标签粘附在半胱氨酸分子上,最后再利用中和性抗体来靶向作用病毒。如果这些抗体因为被半胱氨酸标签所阻断而无法与病毒上的关键位点结合的话,那么病毒就会存活并引起感染,通过对存活突变体病毒中的基因进行测序,研究人员就能够识别出这些位点。 最后研究者表示,这是一种快速弄清楚抗体结合位置的方法,其对于疫苗设计非常有用,同时还能够帮助检测不同人群机体中的血清样本如何对相同的候选疫苗或病毒产生反应,从原则上来讲,研究人员还能将这种方法进行修饰以适应于任何病毒,当然这就包括SARS-CoV-2。
  • 《Biomaterials:科学家有望利用“蜘蛛丝”开发出新型抗癌疫苗》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-06-21
    • 为了能够有效对抗癌症,如今越来越多的科学家们都利用疫苗来刺激患者机体的免疫系统,从而有效鉴别并且杀灭肿瘤细胞;然而理想的免疫反应或许总是无法得到保证,为了增强疫苗对机体免疫系统,尤其是T淋巴细胞(专门用来检测癌细胞)的效应,来自日内瓦大学等机构的科学家们通过研究开发出了一种特殊的蜘蛛丝微型胶囊来将疫苗直接运输到免疫细胞的核心,这或许有望帮助研究人员开发出有效抵御感染性疾病等多种疾病的新型疫苗,相关研究刊登于国际杂志Biomaterials上。 我们机体的免疫系统主要基于两类免疫细胞,即B淋巴细胞和T淋巴细胞,前者能够产生机体所需的抗体来抵御多种疾病;当处于癌症和特定感染性疾病(比如结核病)等情况下,机体的T淋巴细胞就需要被刺激激活,然而其激活机制却要比B淋巴细胞要复杂的多,为了能诱发免疫反应,T淋巴细胞需要利用一种肽类分子,如果这种肽类单独注射的话,在其达到目标之前就会被机体迅速分解。 研究者Carole Bourquin教授说道,为了能够开发出有效抵御癌症的免疫治疗性药物,产生一种具有明显反应的T淋巴细胞就显得非常有必要了,由于目前的疫苗对T细胞的作用非常有限,因此我们就需要开发出其它疫苗策略来克服这个问题。 几乎坚不可摧的胶囊 文章中,研究人员利用了一种合成性的蜘蛛丝生物聚合物,这是一种超轻、具有生物相容性的无毒材料,其对光和热的降解有很强的抵抗力,研究者在实验室中重新制作了这种特殊的丝状物,并将其插入一种具有疫苗特性的肽类中,合成的蛋白质链经过盐析就形成了一种可注射的微粒。这种丝状微粒就能形成一种可运输的胶囊,保护疫苗肽类免于机体的快速降解,同时还能将肽类运输到淋巴结细胞的中心,最终增强T淋巴细胞的免疫反应;这项研究证实了研究人员的技术是有效的,这种新型疫苗策略的有效性非常稳定,而且易于制造并定制。 建立新型的疫苗模型 这种合成性的丝状生物聚合物颗粒具有较高的耐热性,能够承受100摄氏度的高温数小时且不会被损坏;从理论上来讲这一过程就会使得疫苗开发的过程并不需要佐剂和冷链运输,尤其适合于发展中国家,因为很多发展中国家最大的困难就是如何有效地保存疫苗;然而研究者面临的另外一个限制就是微型颗粒的大小,从原则上来讲其适合于任何肽类,因此其就需要足够小才能够被整合到丝状蛋白中去,后期研究人员还需要更为深入的研究来观察是否能够在标准疫苗中加入较大尺寸的抗原,特别是针对病毒性疾病。 当科学模仿自然 最后研究者Scheibel说道,如今科学家们非常擅长于模仿大自然中的事物,这种方法实际上还有一个名字,那就是“生物灵感”(bioinspiration),蜘蛛丝的特性使其成为了一种非常有趣的产品,这些特性包括:生物相容性、固体、薄、生物可降解性、耐极端条件甚至抗菌等,实际上蜘蛛丝有很多医学应用,比如伤口敷料或缝合线等。