《科学家开发的环保方法可降低回收锂离子电池的成本》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2020-11-16
  • 据外媒报道,现在的锂电池大多使用一种名为钴的稀有和昂贵的金属作为阴极成分的一部分,但开采这种材料需要付出巨大的环境代价。其中一种更环保的替代品被称为磷酸锂离子, 而一项新的突破可以进一步提高这种阴极材料的环保性能,一旦用完就可以恢复到原来的状态,而使用的能量只是目前方法的一小部分。

    这项研究由加州大学圣迭戈分校的纳米工程师进行,主要研究磷酸铁锂制成的阴极电池的回收技术。通过摒弃镍和钴等重金属,这些类型的电池可以帮助避免这些材料开采地的景观和水源的退化,以及工人暴露在危险条件下。

    人们对钴相关问题的认识不断提高,推动了行业的转变,许多人都在寻找替代电池设计,包括IBM和特斯拉这样的大公司,他们今年开始销售采用磷酸铁锂电池的Model 3。这些电池更安全、寿命更长、生产成本更低,不过有一个不足之处是,一旦用完,回收成本很高。

    “回收它们并不划算,”加州大学圣迭戈分校的纳米工程教授郑晨说。“这和塑料的困境是一样的--材料很便宜,但回收它们的方法却不便宜。”

    回收突破的重点是磷酸铁锂电池性能退化背后的几个机制。当它们被循环使用时,这个过程会推动结构变化,随着锂离子的流失,阴极中产生了空位,同时铁和锂离子也会在晶体结构中交换位置。这就会夹带锂离子,防止它们在电池中循环。

    该团队将市售的磷酸铁锂电池单元,并将其耗尽到一半的存储容量。然后,他们将电池拆解,并将所得粉末浸泡在含有锂盐和柠檬酸的溶液中,然后将其冲洗干净,晾干,再在约60至80℃的温度下加热。然后将这种粉末制成新的阴极,并在纽扣电池和小袋电池中进行测试,研究小组发现其性能恢复到初始状态。

    这是因为这种回收技术不仅补充了电池的锂离子存量,而且使锂离子和铁离子重新回到阴极结构中的原始位置。这要归功于柠檬酸的加入,它给铁离子提供了电子,减少了通常排斥铁离子移动到原来位置的正电荷。这一切的结果是,锂离子可以被释放出来,再次在电池中循环。

    根据该团队的研究,其技术与目前回收磷酸锂离子电池的方法相比,消耗的能量减少了80%至90%,排放的温室气体也减少了约75%。虽然这是一个很好的开始,但该团队表示,还需要进一步研究,以确定收集和运输大量这些电池的整体环境足迹。

    “弄清楚如何优化这些流程是下一个挑战,”郑晨说。“而这将使这种回收过程更接近于行业采用。”

    该研究发表在 《Joule》 杂志上。

相关报告
  • 《科学家将核废料转化为可持续使用1000年的钻石电池》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2022-04-26
    • 核能被认为是一种清洁能源,因为它的二氧化碳排放量为零;然而,与此同时,随着世界各地越来越多的反应堆的建成,它产生了大量的危险的放射性废物。专家们为这个问题提出了不同的解决方案,以便更好地照顾环境和人们的健康。由于没有足够的安全储存空间来处理核废料,这些想法的焦点是材料的再利用。 放射性钻石电池在2016年首次被开发出来并立即受到好评,因为它们承诺提供一种新的、具有成本效益的核废料回收方式。在这种情况下,不可避免地要斟酌它们是否是这些有毒、致命残留物的最终解决方案。 什么是放射性钻石电池? 放射性钻石电池最初是由布里斯托尔大学卡博特环境研究所的一个物理学家和化学家团队开发的。这项发明是作为一种β辐射电转换设备提出的,这意味着它是由核废料的β衰变提供动力。 β衰变是一种放射性衰变,当一个原子的原子核有过量的粒子并释放一些粒子以获得更稳定的质子和中子的比例时就会发生。这就产生了一种被称为β辐射的电离辐射,其中涉及大量被称为β粒子的高速和高能电子或正电子。β粒子含有核能,可以通过半导体转化为电能。 β衰变是一种放射性衰变,当一个原子的原子核有过量的粒子并释放一些粒子以获得更稳定的质子和中子的比例时就会发生。 一个典型的betvoltaic电池由置于半导体之间的放射性材料薄层组成。当核材料衰变时,它发射出β粒子,将半导体中的电子击散,产生电流。然而,放射源离半导体越远,其功率密度就越低。除此之外,由于β粒子是随机向各个方向发射的,只有少数粒子会击中半导体,而其中只有少数粒子会被转化为电能。这意味着核电池的效率比其他类型的电池低得多。这就是聚晶金刚石(PCD)的作用。 放射性钻石电池是使用一种叫做化学气相沉积的工艺制造的,这种工艺被广泛用于人造钻石的制造。它使用氢气和甲烷的混合等离子体,在非常高的温度下生长金刚石薄膜。研究人员通过使用含有放射性同位素Carbon-14的放射性甲烷,对CVD工艺进行了修改以生长放射性钻石,这种放射性同位素在经过辐照的反应堆石墨块上发现。 钻石是人类所知的最硬的材料之一--它甚至比碳化硅更硬。而且它既可以作为一个放射源,也可以作为一个半导体。把它暴露在β射线下会得到一个不需要充电的长效电池。它内部的核废料一次又一次地为它提供燃料,使它能够长期自我充电。然而,布里斯托尔的科研团队警告说,他们的放射性钻石电池不适合用于笔记本电脑或智能手机,因为它们只含有1克碳-14,这意味着它们提供的功率非常低--只有几微瓦,低于典型的AA电池。因此,到目前为止,它们的应用仅限于那些必须长时间无人看管的小型设备,如传感器和心脏起搏器。 核电池的起源可以追溯到1913年,当时英国物理学家亨利-莫斯利发现,粒子辐射可以产生电流。在20世纪50年代和60年代,航空航天工业对莫斯利的发现非常感兴趣,因为它有可能为长期任务的航天器提供动力。RCA公司也研究了核电池在无线电接收机和助听器中的应用。 但为了发展和维持这项发明,还需要其他技术。在这方面,合成钻石的使用被认为是革命性的,因为它为放射性电池提供了安全性和导电性。随着纳米技术的加入,一家美国公司打造了一个高功率的纳米钻石电池。 NDB公司总部位于加利福尼亚州旧金山,成立于2012年,目标是创造一种更清洁、更环保的传统电池替代品。这家初创公司在2016年推出了其版本的基于钻石的电池,并宣布在2020年进行两项概念验证测试。它是试图将放射性钻石电池商业化的公司之一。NDB的纳米钻石电池被描述为Alpha、Beta和中子辐射电池,根据他们官网的介绍,有如下特点: 持久性。该公司计算出这些电池可以持续28000年,这意味着它们可以为长期任务中的空间飞行器、空间站和卫星提供可靠的动力。地球上的无人机、电动汽车和飞机将永远不需要停下来充电。 安全。钻石不仅是最坚硬的物质之一,也是世界上最有导热性的材料之一,这有助于保护电池中的放射性同位素所产生的热量,使其迅速变成电流。 市场友好性。其中的PCD薄膜层使电池可以允许不同的形状和形式。这就是为什么纳米钻石电池可以有多种用途,进入不同的市场,从上述的空间应用到消费电子。不过,消费版寿命不会超过十年。 纳米钻石电池计划在2023年进入市场。 Arkenlight是将布里斯托尔的放射性钻石电池商业化的英国公司,计划在2023年下半年向市场发布他们的第一个产品。 放射性钻石电池的未来 现代电子设备的便携性,电动汽车的日益普及,以及21世纪将人类带入火星的长期太空任务的竞赛,在过去几年中引发了人们对电池技术研究的日益关注。 一些类型的电池更适合于某些应用,而对另一些应用则不那么有用。但我们可以说,我们熟悉的传统锂离子电池不会很快被放射性钻石电池取代。 传统电池的持续时间较短,但它们的制造成本也更低。然而,与此同时,它们的寿命并不长(它们的寿命约为5年),这也是一个问题,因为它们也会产生大量的电子垃圾,不容易回收。 放射性钻石电池更方便,因为它们的寿命比传统电池长很多。如果它们能像NDB公司提出的那样被开发成通用电池,那么我们最终可能会得到比智能手机寿命长得多的电池。 然而,Arkenlight公司开发的钻石β辐射电转换技术不会走那么远。该公司正在研究将其大量的碳-14betab电池堆叠成电池的设计。为了提供高功率的放电,每个电池可以伴随着一个小型的超级电容器,这可以提供一个优秀的快速放电能力。 然而,这种放射性材料的寿命也超过了5000年。如果辐射以气态形式从设备中泄漏出来,可能会成为一个问题。这就是钻石出现的原因。在钻石的形成中,C-14是一种固体,所以它不能被生物提取和吸收。 英国原子能管理局(UKAEA)计算,100磅(约45公斤)的碳-14足以拿来制造数百万个基于钻石的长寿命电池。这些电池还可以降低核废料的储存成本。 布里斯托尔大学研究员汤姆-斯科特教授告诉Nuclear Energy Insider说:"通过直接从反应堆中去除辐照石墨中的碳-14,这将使剩余的废物产品的放射性降低,因此更容易管理和处置。处置石墨废物的成本估计为:中级废物[ILW]每立方米46,000磅(60,000美元),低级废物[LLW]每立方米3,000磅(4,000美元)。" 所有这些特点正是我们需要的可持续未来的最佳选择之一,我们可以拭目以待,看看制造商是否能找到处理生产成本和低能量输出的方法,并将他们的钻石基电池以成本效益和可获得的方式推向市场。
  • 《科学家将开发大规模储能电池技术》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-10-29
    • 随着电动车和新能源储能需求上升,业界期待更好的电池技术,其中液流电池在大规模储能系统方面具有很好前景。英国帝国理工学院26日表示,该校学者已获得欧盟资金资助,开发新一代液流电池技术。   帝国理工学院宋启磊博士获得了欧洲研究理事会科研启动基金总值150万欧元(约合160万美元)的项目资助。他的团队将与爱丁堡大学、剑桥大学以及欧洲和中国的机构合作开发这种电池技术。   宋启磊向新华社记者介绍说:“传统的锂离子电池是把电解液和电极材料封装起来,有机电解液热稳定性受到限制,容易发生爆燃,安全性受限;相比之下,液流电池将可以充放电的电解液材料和电堆单元解耦,这样正负极电解液可以单独储存在容器中,然后通过泵输送到电池内部实现充放电,安全性高,能量可长久储存,非常适合大规模的储能系统应用。”   当前,比较常见的液流电池是全钒液流电池,这种电池采用的是商业化的离子交换膜和钒材料,但活性材料和隔膜的成本都很高,限制了液流电池的大规模使用。宋启磊在帝国理工学院的实验室中向记者展示了液流电池的关键组成部分——隔膜。这种材料的性能显著制约着液流电池性能和生产成本等因素。   他说:“我们希望开发新型纳米多孔隔膜材料和低成本的电解质材料,通过分子设计从根本上提高膜的离子传导能力和选择性,结合纳米加工技术制备纳米膜,集成新型的电解质材料,有望开发下一代新型、廉价、环保、高能量密度的液流电池技术。”   据团队介绍,新型膜材料技术不但可用于电池,未来在污水处理、气体净化等能源与环保领域也会有很好的应用前景。