《航空航天材料/制造技术向低成本、高性能、多功能方向发展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2020-01-10
  • AIAA学会材料技术委员会(主要致力于推动航空航天产品对于先进材料的兴趣、研究和应用,特别关注航空航天系统对材料重量、多功能性和生命周期等关键特性的依赖)总结了2019年航空航天材料领域的技术进展,均主要集中在复合材料领域。

    一、“非热压罐”工艺为航空航天结构创新带来更多可能 2019年,麻省理工学院和梅蒂斯设计公司(Metis Design Corp)合作,展示一种“非热压罐”复合材料固化工艺,这种工艺摆脱了传统基于热压罐固化过程的限制。使用传统热压罐工艺的缺点主要包括能量效率差、操作成本高、固化时间长,且对被固化的复合材料零部件几何外形有一定约束。2019年8月,联合研究团队验证了用于传导性固化复合材料结构的碳纳米管加热装置,去除了热压罐,与传统固化复合材料方法相比,实现等效的热物理和机械性能同时,还进一步减少了近60%的固化时间,能量消耗减少了近两个数量级。研究团队认为,这一工艺创新将有助于通过利用纳米工程层压材料的功能特性,如传感、结构健康检测和防冰系统等,设计和制造新一代多功能航空航天结构部件。

    二、热塑性复合材料耐热性能获得显著提升 2019年7月,KAI有限责任公司、德克萨斯大学奥斯汀分校、澳大利亚墨尔本皇家理工大学、阿科玛公司和西华盛顿大学联合开展了一项研究,利用高温熔融纤维制造技术,开发了五种独特的超高性能聚合物,这五种新牌号分别是:SABIC PEI(聚醚酰亚胺) ULTEM 9085,Roboze PEEK(聚醚醚酮),智能材料3D打印PEEK(聚醚醚酮),阿科玛Kepstan 7002 PEKK(聚醚酮酮)和改性的PEI(聚醚酰亚胺)ULTEM 1010材料。这些材料可在低热通量的航天器中应用。此项研究的主要目标是开发一类材料和增材制造工艺,以期在未来大幅降低空间飞行器热保护系统的制造和装配成本。所有的五种超高性能热塑性复合材料均能够在每平方厘米100瓦热通量的气动热测试坚持30秒而不发生结构破坏和分解。根据热重分析焦炭产率结果,Kepstan 7002 PEKK(聚醚酮酮)的焦炭产率最高,为64%,而ULTEM 9085的焦炭产率最低,为43%。高焦炭率通常是指材料具有良好的烧蚀性能。除了实验研究,科研人员还利用计算流体动力学分析了在各种情况下获得的样品之间的热传递,并与实验获得的材料进行了对比。

    三、陶瓷基复合材料制造技术实现突破 2019年2月,Nanoarmor公司和美国海军研究实验室制造出了70%致密的用于增材制造碳化锆复合材料。这种超高温陶瓷材料又称UHTC,可提供卓越的性能,在飞机前缘和发动机部件在等承受极端高温平台中将获得广泛的应用前景。现有耐火陶瓷难以提供足够的机械性能和热性能以应付极端服役环境,除此之外,现有材料对应的制造方法也难以适应高性能航空航天系统前缘组件对结构订制化、成本效益化的要求。 Nanoarmor公司、海军研究实验室联合开发的新技术可用于生产低成本UHTC碳化锆陶瓷基复合材料与纳米结构的增强件,可在高温和机械应力下最大化密度、硬度和耐久性。基于聚合物反应结合的合成机理,从金属前躯体与富含碳元素的高焦炭产率树脂的压缩粉末混合物中产生净成型的碳化物,氮化物和硼化物。此外,这项技术是无压力的,并采用了一步反应熔体渗透工艺,可将陶瓷混合物在1400℃下转化为致密的订制样式。这项技术与现有的替代方案相比具有更显著的成本优势。研究人员用金属、纤维、纳米碳纤维和第二陶瓷相来增强陶瓷基复合材料,以提高其机械强度、导热性、抗氧化和耐烧蚀性。前躯体材料与聚合物粘合剂的共混物形成具有可控制粘度的悬浮液,从而可实现具有可调尺寸、订制几何形状和特性的低成本快速原型件制造。

相关报告
  • 《2017航空航天用材料大事件》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2017-12-06
    • 人类对于天空的探索自古有之。进入20世纪后,航空航天科学技术兴起并迅速发展,对军事、经济乃至人类社会产生了深远影响。 我们都知道,航空航天飞行器需要在超高温、超低温、高真空、高应力、强腐蚀等各类复杂环境中工作,因此,性能上能够应对以上极端条件的材料就成为了航空航天技术发展的决定性因素之一。 近年来,航空航天材料技术水平不断提高,市场规模不断壮大,尤其是具备轻质、抗疲劳、耐腐蚀等特性的先进复合材料,成为了市场的“香饽饽”。ASD Reports咨询公司最新报告显示,预计到2022年,航空航天复合材料市场总额可达429.7亿美元。 2017年有哪些新型航空航天用材料问世?国内外材料领域龙头企业有何最新布局?各大院校和研究机构的技术研究有哪些突破性进展?新材料在线®对此进行了盘点,以飨读者。 以下以新闻发布时间为倒序,不分先后。 1. 美国联邦航空管理局出台增材制造路线图 10月23日消息,美国联邦航空管理局于9月底提交审查文件,制定了“增材制造战略路线图”草案,路线图包含重要的监管信息,涵盖认证、机器和维护、研究和开发的问题和考虑,以及对增材制造方面教育和培训的双重努力需求。该路线图综合了多方面的贡献,包括美国航空航天局,航空航天工业协会的增材制造工作组和美国军队,并且受到了2018年政府预算的支持。 2.波音公司60万美元助力飞机“增寿”材料研究 10月10日消息,波音公司向德克萨斯大学阿灵顿分校捐赠60万美元,用于测试复合材料部件。项目领导人UTA机械与航空航天工程教授Andrew Makeev表示,项目结束后,这一波音公司和空军希望了解并信赖的研究将能够用于分析预测复合机体结构的剩余使用寿命。该研究有助于提高航空业的可持续发展,管理以及维护飞机生命周期。此外,该项工作或对飞机设计和认证产生重大影响,利用发展能力预测复合空气强度和耐久性,势必会对行业产生影响。 3.Hexcel公司740万英镑研发用于前沿航空部件的碳纤维织布 9月18日消息,赫氏公司(Hexcel)计划设立一项总投资740万英镑的研发计划,旨在开发航空和汽车复合材料结构部件用碳纤维材料。这项为期四年的多轴向灌注材料(MAXIM)项目致力于研发新型碳纤维织物和树脂,生产出成本更低、生产效率更高的非热压罐成型复合材料部件,替代机翼等复杂的金属结构件。该项目支持新材料开发,使得航空工业复合材料相关技术能够全面满足未来项目对复合材料的大量需求。 4.威格斯公司加入热塑性塑料中心 开展航空航天相关研究 9月7日消息,威格斯公司作为第一级成员加入了荷兰恩斯赫德ThermoPlastic复合材料研究中心(TPRC),并将与波音、达赫、德迪恩航空、TenCate和Vaupell航空公司等其他一级和二级成员共同合作。威格斯航空航天总监蒂姆•赫尔表示,公司将进一步开发混合成型材料和工艺技术,旨在为工程师提供飞机部件设计和制造所需的开发工具。这项技术的改进有助于使之在航空航天供应链中发挥作用。 5.航材院-曼大成立石墨烯航空航天材料联合技术中心正式揭牌 7月10日至12日,中国航发代表团先后到访英国曼彻斯特大学和帝国理工学院,“航材院-曼大石墨烯航空航天材料联合技术中心”“航材院-曼大大学技术中心”和“航材院—帝国理工材料表征、加工及仿真中心”也在英国正式揭牌。联合技术中心的成立为中国航发和两所大学搭建了进一步深化合作、人才培养的平台,有利于中国航发提升基础科研能力,加快培养具有国际化视野的高层次科研人才队伍。 6.赫氏公司为空客H160直升机供应复合材料 6月29日消息,赫氏公司和空客公司在巴黎航展上透露,空客直升机已经要求赫氏公司提供了一系列H160直升机部件的复合材料,包括机身、尾翼和转子叶片。此外,赫氏公司还将为空客中型实用直升机项目提供增强件,预浸料,蜂窝材料和胶黏剂,直升机预计于2019年投入正式运营。 7.索尔维和福克联手开发飞机复合材料 6月29日消息,索尔维和GKN航空福克业务部已形成合作伙伴关系,索尔维将成为福克轻质复合材料的首选供应商。两家公司表示,与传统的金属解决方案相比,热塑性复合材料可以将飞机部件的重量降低25%。索尔维复合材料全球业务部门总裁Carmelo Lo Faro表示,与福克业务部的合作,是索尔维成为向航空、石油、天然气和汽车行业提供热塑性复合材料领先供应商的重要一步。 8.美国空军实验室正开发飞机用液态金属天线技术 6月13消息,美国空军实验室(AFRL)研制了一种内部填充液态金属的通道系统,可以根据所需频率和方向进行重新配置天线,并在70MHz到7GHz的频率范围内间进行了测试,该工作或可精简飞机上的通信设备。目前该研究已完成在实验室的测试和试验,正计划在无人机上进行试验。科学家认为这种液态天线技术可在7-10年内获得应用。 9.中俄联合研制新一代远程宽体飞机C929 复合材料比重或超50% 5月22日,中国商飞与俄罗斯联合航空制造集团的合资企业——中俄国际商用飞机有限责任公司在上海成立,该合资公司主要负责中俄联合研制新一代远程宽体飞机C929项目的运行工作。据俄罗斯联合航空制造集团总裁斯柳萨里介绍,C929飞机的复合材料比重将超过50%。复合材料的产能方面,预计将以俄方为主,也可能应用部分中国研制生产的。 10.俄罗斯研制出耐高温超硬的复合材料 能大幅减轻飞机重量 5月12日消息,莫斯科大学的物理学家们合成出一种新型聚合物复合材料,强度远超航空铝钛合金,为建造超轻型飞机和卫星提供可能。科学家通过两个简单环节利用不饱和炔烃、氮化合物和苯,制备出呈橙色状复合新型聚合物基体。含有这些成分制备出的聚合物超级坚固,并能承受约400摄氏度的加热温度,保持结构稳定不变形。据了解,莫斯科大学实验室合成的数批材料试样,已交由巴拉诺夫中央航空发动机研究院和喀山图波列夫国家研究型技术大学等机构进行测试。 11.欧盟成功研制航天专用特种碳纤维及预浸料 5月5日消息,由来自葡萄牙(协调国)、西班牙和爱尔兰的科研团队合作完成的EUCARBON项目,成功建立欧洲第一条面向卫星等航天领域用特种碳纤维生产线,从而有望使欧洲摆脱对该产品的进口依赖,确保材料供应安全。EUCARBON项目于2011年11月启动,致力于提升欧洲在航天用碳纤维及预浸料方面的制造能力。项目历时4年,总投入320万欧元。除了航天领域,项目也在积极发掘特种碳纤维在汽车工业和能源领域应用的潜力。 12.先进材料助力 国产大飞机C919首飞成功 5月5日, 国产大型客机C919在上海浦东机场成功完成首飞任务。C919大型客机的研制,实现了以第三代铝锂合金、复合材料为代表的先进材料首次在国产民机上大规模应用,总占比达到C919飞机结构重量的26.2%。C919在机体选材上开创了两个全国首次,一是先进铝锂合金的应用,一是复合材料应用范围从方向舵等次承力结构到平尾等主承力结构,国内首次在民用飞机的主承力结构、高温区、增压区使用复合材料。 13.汉高胶粘剂技术业务部门西班牙建新航空航天生产线 4月18日消息, 汉高公司胶粘剂技术业务部门已开始在西班牙Montornès地区建造新航空航天应用生产线。新生产线将满足轻量化和自动化等日益增长的全球航空航天工业需求。该生产线将包括新的厂房和设备,以增加生产和仓储能力。第一批产品预计将于2019年交付。通过Montornès的新工厂,汉高粘合技术公司将利用汽车行业的丰富经验,高品质产品和创新能力,进一步支持客户的需要和对成本的控制。 14.商业航空生产商Diehl Aircabin与德国代傲航空Diab签署长期供应协议 3月28日消息,商业航空的客舱内饰生产商Diehl Aircabin与代傲航空Diab签署了长期协议,将为其供应Divinycell F和其他用于客舱内部应用的结构泡沫芯材料。与Nomex蜂窝解决方案相比,使用Divinycell F可以节省高达20%的重量,显著地降低了成本。且Divinycell F生产线拥有业界最短交货时间和最高生产能力。 15.明日宇航入股鲁晨新材达成战略合作 开拓航空航天领域高端复合材料的应用 1月25日消息,成都鲁晨新材料科技有限公司与四川明日宇航工业有限责任公司成功结为战略合作伙伴,共同进军航空航天高端复合材料制造领域。鲁晨新材始终致力于碳纤维、芳纶等高性能复合纤维材料的研发与应用。而明日宇航是目前是中国最大的飞机结构件民营配套基地,以飞机结构件减重技术的开发和服务为技术主线,与鲁晨新材高性能复合纤维材料在航空航天领域“质量轻、强度高”的应用,将形成珠联璧合。
  • 《3D打印技术在航天复合材料制造中的应用》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-03-20
    • 复合材料的需求将以更快的速度增长,而其高成本成为制约复合材料广泛应用的重要瓶颈。低成本复合材料制造技术是目前世界上复合材料研究领域的一个核心问题。提高复合材料的性能价格比,除了在原材料、装配与维护等方面进行研究改进外,更重要的是降低复合材料制造成本。 3D打印 近年来,3D打印技术的出现为制造业开辟了一个全新的思路,不同于传统制造业的减材制造和等材制造,它通过添加材料的方式可以快速地成型复杂形状产品并且实现极大限度的利用原材料。 航天器的发射成本高,有效载荷的质量对发射成本影响巨大,因此有效载荷在结构设计和材料选用时特别注重结构效率。碳纤维复合材料具有比强度高、比模量大、热稳定性好、可设计性强等特点,优异的综合性能正是追求高性能、结构质量效率优化的航天产品所需。 目前,应用在航天光学遥感器的碳纤维复合材料产品涵盖遥感器的各个部位,如相机镜筒、相机支架、遮光罩、桁架等。所用树脂以环氧树脂和氰酸酯树脂为主,增强材料以连续碳纤维为主。根据具体产品特点和工艺特点,按照产品的性能要求和厚度要求将预浸料以一定的铺层顺序和铺层层数在模具上叠放形成坯体,再将坯体放入热压罐或热压机在高温环境下进行数小时的高温高压固化。 航天遥感器复合材料及制造工艺主要有以下特点: 1)为保证产品的力学性能,增强体采用连续纤维; 2)树脂基体环氧树脂和氰酸酯树脂均为热固性树脂,需要在特定的固化温度和压力下进行数小时固化(发生化学交联反应)以形成稳定的网状交联聚合物; 3)预浸料叠层坯体内部松散,为排出坯体中的空气和其他小分子,需对坯体在加热的同时施加高压,以提高制品的致密性,保证制品的力学性能; 4)对于复杂结构产品,为保证其力学性能,预浸料铺层设计往往需要多个平面或多个部位进行连续铺层,如薄壁加筋镜筒需保证法兰环和镜筒筒体的连续、加强筋与镜筒筒体的连续等,多向接头中要保证各端头周向连续、各端头之间的根部连续等。 3D打印技术 3D打印也叫增材制造,区别于传统的减材或等材加工制造方法,它是采用材料逐层累加的方法制造实体零件。该技术是在现代CAD/CAM技术、激光技术、计算机数控技术、信息技术、精密伺服驱动技术以及新材料与物理化学技术的基础上集成发展起来的。 其工作原理是将物理实体的计算机三维模型离散成一系列的二维层片,利用精密喷头或激光热源,根据层片信息,在数字化控制驱动下,将熔覆的成型材料通过连续的物理层叠加固化,逐层增加材料来生成三维实体产品。 在各种3D打印技术中,能够进行复合材料3D制造的主要有选区激光烧结(SLS)、熔融沉积成型(FDM)、分层实体制造(LOM)以及立体光刻技术(SL)。 SLS制造复合材料的主要方法是混合粉末法,即基体粉末与增强体粉末混合,激光按设计图纸的截面形状对特定区域的粉末进行加热,使熔点相对较低的基体粉末融化,从而把基体和增强体粘接起来实现组分的复合。该方法存在的问题是混合粉末中两种材料的密度不同,易出现沉降使得制品成分不均匀。通过合成单一复合材料粉末进行技术改进,制得的复合材料粉末将能克服混合粉末的易沉降、不均匀等问题从而能够制得品质更高的制品。 FDM工艺制造复合材料是预先将纤维和树脂制成预浸丝束,再将预浸丝束送入喷嘴,丝束在喷嘴处受热融化并按设计轨迹堆放在平台上形成一层层材料,层与层之间通过树脂部分或完全融化形成连接。FDM技术所用的复合材料预浸丝束必须满足组分、强度以及低粘度等要求,一般需要在复合材料中添加塑性剂增加流动性。 LOM技术与FDM类似,需预先制备单向纤维/树脂预浸丝束并排制成无纬布即预浸条带,预浸条带经传送带送至工作台,在计算机的控制下,激光沿三维模型每个截面的轮廓线切割预浸条带,逐层叠加在一起,形成三维产品。 利用SL制造复合材料,首先需将光敏聚合物与增强颗粒或纤维混合成混合溶液,利用紫外激光快速扫描存于液槽中的混合液,使光敏聚合物迅速发生光聚合反应,从而由液态变为固态,然后工作台下降一层薄片的高度,进行第二层激光扫描固化,如此反复,形成*终产品。SL制造复合材料存在增强颗粒发生沉淀导致颗粒分布不均匀、溶液中泡沫导致固化后孔洞的产生、颗粒的反射使得激光吸收能量变低因而需要更长的照射时间等问题。 复合材料3D打印技术进展 热塑性树脂具有加热变软、冷却固化的工艺特性,易于实现增材制造,在3D打印市场以热塑性塑料为主,同样,在复合材料3D打印技术中,以热塑性树脂为基体的复合材料相对也是主要的研究对象,增强材料有短切纤维和连续纤维。 德国、美国等3D打印公司及我国华曙高科等分别研制了可用于SLS技术的短切纤维/热塑性树脂复合材料粉末并实现商业化。 美国MarkForged公司2014年初研发了连续碳纤维增强热塑性复合材料3D打印设备MarkOne,打印出了碳纤维增强尼龙复合材料。打印机具有两个喷头,一个喷头输送热塑性树脂(尼龙或聚乳酸),一个喷头输送连续的预浸碳纤维丝或预浸玻璃纤维丝,预浸纤维丝涂有特别为打印机开发的热塑性树脂,两个喷头轮流工作,用基于FDM的工艺沿X/Y平面铺放树脂和预浸丝束,实现纤维和树脂的复合,纤维可以按需要取向或仅在需要的地方铺放。目前,该设备仅能实现X/Y方向纤维取向,尚不能实现Z向取向。MarkOne可打印尺寸为0.6m×0.4m×0.3m。 美国Stratasys公司和美国能源部(DOE)橡树岭国家试验室合作开发量产碳纤维复合材料FDM制造技术。合作分为3个阶段,第一阶段研究在FDM过程中如何放入碎纤维以及如何调整材料的各种机械性能,第二至第三阶段研究集中于在中心线上开工制造连续碳纤维复合材料以及进一步的处理。 哈佛大学研制了适用于3D打印的环氧树脂,实现了热固性树脂的3D打印。为改善树脂粘度,研究人员添加了纳米粘土、二甲基磷酸酯、碳化硅晶须和短切碳纤维,以咪唑基离子做固化剂,极大地拓展了树脂的打印窗口,使树脂在长达数周的打印窗口期内粘度不会显著增加。通过控制纤维长径比和喷嘴直径,使填料在剪切力和挤出流的作用下发生取向,实现了填料取向的控制,获得了取向的纤维。打印好的部件先在较低的温度下预固化,然后从基板上移出再进行进一步高温固化。 航天用树脂基复合材料3D打印技术分析 目前复合材料3D打印技术以短纤维/热塑性复合材料为主,材料和设备实现了商业化,而热固性基复合材料仅在试验室实现了短切纤维增强复合材料的3D打印。结合航天遥感器复合材料的产品特点,连续纤维增强热固性复合材料3D打印技术在打印材料、多维连续打印、预固化功能等方面亟待突破。 亟待突破的方面 1)开发适应性的打印材料。复合材料3D打印过程要求打印材料具有适当的粘度、流动性、长的操作时间、短的成型时间,因此需对现有航天复合材料材料体系进行适应性开发,对材料体系进行改进,以提供满足3D打印技术和航天应用要求的材料。 2)突破纤维多维连续打印。复合材料3D打印设备亟需突破在多维方向的连续堆积,如设置五轴/六轴联动打印平台通过转动平台实现多维连续打印,以满足航天复杂结构产品多个平面、多个部位的连续铺层要求。 3)实现预压实功能。热固性树脂基复合材料需在高温高压下实现树脂基体的固化和制件的致密化,可在打印一定层数后在设备内对坯体进行预压实和加热,提高打印中间过程的致密性,打印完成后再将坯体移至固化设备进行最终固化。 采用低成本技术是降低复合材料产品成本的有效途径之一,3D打印技术通过增加材料实现产品的制造,能够极大限度的发挥材料的利用率,降低复合材料生产成本。 此外,对于复杂结构复合材料产品,3D打印技术还可以减小对工装的依赖,缩短加工时间,同时还可以实现整体成型、减少装配时间,研究3D打印技术在航天复合材料的应用具有重大工程意义。对于航天遥感器所用的连续纤维增强热固性树脂复合材料,3D打印需解决打印材料、纤维多维连续打印、预固化功能等问题。