《全是数学:提供细胞发展路线图的新工具》

  • 来源专题:土壤、生物与环境
  • 编译者: 李卫民
  • 发布时间:2017-05-04
  • Researchers at Columbia University Medical Center have created a new tool to describe the many possible ways in which a cell may develop. Rooted in the mathematical field of topology, the tool provides a roadmap that offers detailed insight into how stem cells give rise to specialized cells.

    The study was published in Nature Biotechnology.

    Every organism begins with one cell. As that cell divides, its copies branch off to become specialized cells -- such as heart, bone, or brain cells -- in a process known as differentiation. To understand the internal and external cues that move cells along this path, scientists can sequence their RNA -- the molecular messenger that translates DNA into proteins and other products.

    Sequencing RNA from a batch of cells is not ideal, however, because the cells are usually in different states of development. To address this problem, scientists have developed single-cell RNA sequencing. "It's like a new microscope, giving us the ability to study many biological phenomena at once," said Raul Rabadan, PhD, associate professor of systems biology and biomedical informatics at Columbia and co-author of the paper. "However, researchers are still left with the problem of understanding the relationships between different cell states, which drive the process of development."

    To study cellular development, scientists use mathematical tools to analyze massive amounts of sequencing data. But these tools rely on underlying assumptions that narrow the possible results. "Due to the complexity involved in cellular development, models that make assumptions actually limit your ability to make new discoveries," said Abbas Rizvi, PhD, a postdoctoral research scientist in Columbia's Department of Biochemistry and Molecular Biophysics and the lead author of the paper.

    Dr. Rizvi, together with Pablo G. Camara, PhD, a postdoctoral fellow and theoretical physicist in the Departments of Biomedical Informatics and Systems Biology, looked to topology, an area of math that studies the spatial relationships between surfaces and shapes, to identify connections between different cellular states and the genes that are active while cells are in those states. The collaboration developed an algorithm, called single-cell topological data analysis (scTDA). The algorithm analyzes the RNA sequences of individual cells, reconstructing the underlying developmental trajectories, and capturing the progression of different transcriptional programs in time.

    The researchers used scTDA to map the path of mouse stem cells, which they had coaxed into becoming motor neuron cells. The map correctly indicated the possible developmental trajectory of these cells, starting as stem cells and finally becoming neurons. By looking at which genes were active near particular forks in the map, the researchers were able to identify proteins that appear to guide cellular development at different points along the path. The method was also applied to study the development paths of stem cells from mouse lungs, human embryos, and mouse brains.

    "We expect many more discoveries to come to light as scientists mine this data set," said co-author Tom Maniatis, PhD, the Isidore S. Edelman Professor of Biochemistry, Chair of the Department of Biochemistry and Molecular Biophysics at Columbia. "It really opens up possibilities for a very deep analysis of individual cells at very specific stages of development," said Dr. Maniatis.

    "This approach provides deep insights into the potential fate of a cell, giving us access to the pivotal regulators and molecular transitions that govern a cell's identity -- and presenting the opportunity to steer cells away from paths that have a negative effect on its development," said Dr. Rizvi.

    The approach is currently being applied to uncover the dynamics and cell makeup of complex biological processes, including cancer.

    Journal Reference:

    Abbas H Rizvi, Pablo G Camara, Elena K Kandror, Thomas J Roberts, Ira Schieren, Tom Maniatis, Raul Rabadan. Single-cell topological RNA-seq analysis reveals insights into cellular differentiation and development. Nature Biotechnology, 2017; DOI: 10.1038/nbt.3854

  • 原文来源:https://www.sciencedaily.com/releases/2017/05/170501112618.htm
相关报告
  • 《布局 | IQM公布到2030年实现容错量子计算的发展路线图》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:胡思思
    • 发布时间:2024-11-15
    • 欧洲超导量子计算机开发商IQM Quantum Computers(IQM)昨日宣布了其发展路线图和技术里程碑,目标是到2030年实现容错量子计算,同时它也支持了针对近期用例的专用噪声中等规模量子(NISQ)策略。 自成立以来,IQM已成功交付了基于其前三代处理器的全栈量子计算机。IQM的12年路线图反映了其通过新型算法策略、模块化软件集成和可扩展硬件进展开创量子解决方案的愿景。该路线图充分利用了该公司在设计和制造下一代量子处理器方面的能力,并实现与开放软件栈控制的全栈系统的无缝集成。 IQM凭借其独特的协同设计能力合并了两种处理器拓扑IQM Star和IQM Crystal,并将路线图引向了具有高系统性能的高效纠错部署。为了实现这一路线图,IQM对其研发、测试和制造设施进行了系统性投资,以便在保持高量子比特质量和门保真度的同时,将技术能力扩展到100万量子比特。 为了支持开发者社区并简化量子计算的使用,IQM还将实现HPC的紧密集成,并创建一个特殊的软件开发工具包(SDK)。各种开放接口将增强生态系统的能力,包括量子误差缓解、共同开发库和IQM量子计算机上的用例。 该公司的目标是在多个行业领域发挥量子优势,重点关注量子模拟、优化和量子机器学习。根据一份McKinsey报告,到2035年,这些选定的用例将释放超过280亿美元的价值潜力。 拥有数百至数千个高精度逻辑量子比特的全纠错系统将带来量子优势。该系统通过有效实施新型量子低密度奇偶校验(QLDPC)码来实现纠错。与部署表面码相比,这种方法最多可将硬件开销降低10倍。 此外,IQM的目标是实现误差率低于10^-7的高精度逻辑量子比特,从而为化学和材料科学等要求超高精度的应用带来量子优势。 IQM Quantum Computers联合创始人兼联合首席执行官Jan Goetz博士表示:“我们正在通过一种新颖的芯片拓扑结构实现量子低密度奇偶校验(QLDPC)码,这种拓扑结构得益于我们独特的互联Star结构、长距离耦合器以及非常紧凑的先进封装和信号路由设计方案。这强调了我们对硬件效率的承诺,通过与开放式模块化软件架构相结合,实现了一条可行的、可扩展的容错途径。” Goetz强调,公司专有的洁净室设施将支持制造具有独特长距离连接的复杂处理器,从而促进高性能量子处理器的发展。 为此,IQM将实施针对先进封装和三维集成的新型解决方案,以确保可扩展性,同时维持其降低误差率的宏伟目标。其大规模处理器将以模块化方式构建,并配备低温电子技术,最终减少了热负荷,实现了封装解决方案的高度微型化,并降低了每个量子比特的成本。这些特点将为IQM在HPC和企业市场的客户带来性能更强、价格更合理的产品。
  • 《澳大利亚发布首份机器人发展路线图》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2018-07-09
    • 2016年12月,澳大利亚联邦科学与工业研究组织发布《先进制造:释放澳大利亚未来增长机会路线图》[1],概述了澳大利亚制造业未来面临的主要增长机会,并就制造部门为实现增长机会需要采取的措施提出了相关建议。该报告是系列路线图的首份,每个路线图的领域与工业增长中心计划的领域相一致。 报告指出未来20年,澳大利亚制造业将转变成为一个高度整合的、协作的和出口为导向的产业生态系统,在全球价值链中提供高价值定制解决方案。为实现该愿景,需要澳大利亚公共和私人研究机构在传感器和数据分析、先进材料、智能机器人和自动化、增材制造、虚拟现实和增强现实等领域进行重大技术创新。 报告还指出,澳大利亚制造业需要改变经营方式,投资于新的知识和实践,具体建议包括:①更加注重和参与全球价值链。通过增加许可、引入新销售方法和产品创新,提升制造业国际竞争力;将数字系统与世界领先的最佳实践相结合,加强与全球合作伙伴的互动;增加与经验丰富、全球领先的澳大利亚机构的知识共享。②加强技能培训和劳动力培养。发展数字素质、战略管理能力和STEM技能;改进招聘和员工培养工作;增加劳动力的多样化,特别要增加对年轻和女性员工的雇佣。③促进合作和创新。鼓励使用联合投资模式,如中小企业基金和与研究机构的共同投资;基于云计算和协作软件,加强整个价值链的合作,并快速适应需求变化;为研究人员提供商业化机会,以加强知识共享。④构建产业生态系统。实施更合适的行业数据标准来消除产学研合作障碍;实施有效和精简的标准化监管和合规协议;进行社会科学研究以更好地解决社会许可和不同市场的使能技术问题;将理论和行业实践相结合,融入到高等教育课程中,为学生提供行业实践机会;促进制造业工作成为富有创意、高技能和跨学科的工作,消除公众误解,并吸引熟练劳动力;重新制定定制型培训课程;使企业利用先进制造研究设施,进行培训和早期产品开发;通过政府采购鼓励发展联合体投标;支持产学研合作计划。 [1] Advanced Manufacturing:A Roadmap for unlocking future growth opportunities for Australia. http://www.csiro.au/en/Do-business/Futures/Reports/Advanced-manufacturing-roadmap