《探索 | 湖南大学科研团队提出并实现量子暗场显微镜》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2022-06-15
  • 近日,湖南大学物理与微电子科学学院罗海陆/文双春教授团队在物理学顶级期刊《Physical Review Letters》上发表题为 “Intrinsic Optical Spatial Differentiation Enabled Quantum Dark-Field Microscopy”的文章:结合光学模拟运算与单光子成像技术的量子暗场显微镜,为探索未知的生命细节开拓了新思路。

    光学显微镜是我们探索微观世界的重要工具,已经成为现代光学领域一个充满活力的研究方向。在微观世界中,细胞是生命体的结构单元,也是生命活动的基本单位。 生物细胞的大小、形态以及结构特征与细胞的功能和活动相适应,对其特征识别技术的研究是生命科学的基础,也是现代生命科学的发展支柱。

    大多数生物细胞是微小透明的,通常情况下可看作是纯相位物体,因为它们仅影响输入光场的相位而不是振幅。纯相位物体的散射光非常弱,使得从压倒性的输入光背景中揭示其透明结构变得极具挑战性。传统显微镜的灵敏度和分辨率从根本上受到环境噪声的限制,可以通过增加照明光的强度有效降低环境噪声的影响。但对于光敏生物样品,传统显微成像技术面临一个关键困难:大的光照强度会导致样品的生物物理损伤。

    图1.(a)量子暗场显微成像实验装置图。(b)不同泵浦功率下信号端(红线)、预示端(绿线)和两者之间的符合(蓝线)光子计数。(c)符合光子计数和偏振角之间的关系。

    为克服上述困难与挑战,罗海陆/文双春教授团队将光学模拟运算和单光子成像技术结合,提出并实验证明了全新的量子暗场显微镜。光学模拟计算是指用光学的方法对光场分布执行数学上的运算。基于细胞散射光内禀的光学微分运算,对光场相位分布进行微分运算。纯相位物体的重要特征主要体现在相位分布的局部变化,对相位分布作微分运算可以提取透明细胞的特征。

    单光子触发成像是一种超低噪声的成像技术,增强的灵敏度使其能够探测到单个光子。单光子探测器可以对单个光子进行计数,实现对极微弱信号成像,有效滤除了时域上不重叠的环境噪声。单光子触发探测成像方法大幅提升了少数光子条件下的成像信噪比和对比度,避免对光敏细胞的生物物理损伤。

    图2.透明生物细胞的量子显微成像结果。(a)和(b)内部触发ICCD的直接明场像和直接暗场像。(c)和(d)由单光子触发的量子明场像和暗场像。(e)-(h)分别沿(a)-(d)中的白色虚线提取的强度分布

相关报告
  • 《探索 | 清华大学科研团队突破显微成像信息极限》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2024-02-21
    • 近日,清华大学材料学院于荣团队提出并实现了局域轨道叠层成像方法,将显微成像的信息极限推进到了14pm(0.14埃)。 清晰的原子世界不仅在物理、化学、生命等科学上令人好奇,同时也是材料、芯片、能源等高技术发展的基础。以高能电子作为光源的电子显微镜是高分辨成像的主要平台。本世纪初,像差校正电镜将分辨率带到了亚埃尺度。近年来,作为扫描衍射成像的叠层成像方法又实现了深亚埃分辨。叠层成像(Ptychography)是基于4D-STEM(four-dimensional scanning transmission electron microscopy)数据集的相干衍射成像技术。在配备单电子敏感的像素化探测器的电子显微镜上,通过叠层成像技术可实现深亚埃(< 0.5 埃)分辨成像,成为物质微观结构分析的前沿。然而,传统的叠层成像方法用二维像素矩阵表示电子束和物函数,并不适合离散的原子世界,限制了分辨率的进一步提高。 图1.局域轨道叠层成像方法示意图。(a) 汇聚电子束在每个扫描位置与样品相互作用产生衍射图;(b) 最低的12阶像差系数的实部;(c) SrTiO3在[001]带轴的模拟相位;(d) 用像差函数重构的电子束振幅。(e) 用局域轨道叠层重构的样品相位 图2.通过局域轨道叠层成像方法实现14 pm分辨率。左栏是局域轨道叠层重构的电子束振幅、样品相位及其衍射图,右栏对应传统像素化叠层的重构结果 图3.传统像素化叠层(CPP)与局域轨道叠层(LOP)的剂量效率。(a) LOP的电子束振幅,(b) CPP的电子束振幅,(c) LOP的样品相位,(d) CPP的样品相位,(e) 电子束振幅的信噪比,(f) 样品相位的信噪比 图4.固体中不同元素的相位图及对应的衍射图。(a) Dy, (b) Sc, (c) O1, (d) O2的相位图及对应的衍射图(e-f) 于荣团队提出了一种新的叠层成像方法,用空间局域的类原子轨道函数来描述物体,用像差函数来描述电子束,从而充分利用原子世界的离散特征,显著提高了显微成像的分辨率和精度。局域轨道叠层成像方法不仅实现了破纪录的显微成像分辨率,达到14 pm(0.14 埃),还具有更高的电子剂量效率和信噪比,在低剂量成像条件下也能实现深亚埃分辨,将在金属、陶瓷、芯片和敏感物质的原子分辨率成像中得到广泛应用。 此外,研究还揭示了不同原子对显微成像信息极限的影响。由于物体是由离散的原子组成的,局域轨道叠层的重构结果可以方便地划分到不同原子。由于傅里叶变换是一个线性变换,总衍射图也可以划分到各个元素的独立衍射图。结果表明,信息极限与元素种类有关。金属原子(Dy和Sc)表现出比氧原子更高的信息极限。 这种差异可以归结为三个因素。第一,重原子将入射电子散射到更高的空间频率。这些较高的空间频率有助于在重构过程中提取更多的结构信息,从而得到更高的信息限制。第二,DyScO3中Dy、Sc、O1和O2的德拜-瓦勒因子分别为0.58埃 2、0.60 埃2、0.79埃和0.92 2,表明氧的热漫散射大于Dy和Sc,这使得Dy和Sc原子的热展宽较小,信息极限更高。第三,O1原子柱在电子束传播方向上的原子密度是O2原子柱的一半,导致O1原子柱的散射更弱,因此信息极限更低。
  • 《探索 | 实现原子分辨电子显微镜的新方法》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-04-13
    • 电子显微镜使研究人员可以看到微小的物体,如病毒,半导体器件的精细结构,甚至排列在材料表面的原子。将电子束聚焦到原子大小尺度对于实现如此高的空间分辨率至关重要。然而,当电子束通过静电透镜或磁透镜时,根据聚焦角度和光束发散的不同,电子射线具有位置不同的焦点。矫正这种“球差”既需要昂贵的成本又需要复杂的技术,这意味着只有少数科学家和公司才有能力拥有具有原子分辨率的电子显微镜。 日本东北大学的研究人员提出了一种新的方法,利用光场来形成电子透镜,而不是传统电子透镜中使用的静电和磁场。有质动力使在光场中运动的电子被高光强区域排斥。利用这一现象,甜甜圈形光束与电子束同轴放置,可以对电子束产生透镜效应。 图1: 有质动力透镜(p-lens)的概念图。以一阶拉盖尔-高斯光束为例。 左图显示电子束和光束有共同的传播轴,绿色箭头是电子轨迹。右图描绘了光束束腰的横截面 已有研究从理论上评估了使用典型的甜甜圈形光束形成的光场电子透镜的特性——被称为贝塞尔或拉盖尔-高斯光束。从那里,他们得到了焦距和球差系数的相关公式,这使他们能够快速确定实际电子透镜设计所需的导向参数。 该研究机构证明了光场电子透镜产生的“负”球差与静电电子透镜和磁性电子透镜产生的球差相反。将具有“正”球差的传统电子透镜和可以抵消球差的光场电子透镜结合起来,可以将电子束的大小减小到原子尺度。这意味着光场电子透镜可以用作球差校正器。 “光场电子透镜具有传统静电和磁性电子透镜所没有的独特特性,”东北大学先进材料多学科研究所助理教授Yuuki Uesugi说,他是这项研究的第一作者。Uesugi补充说:“基于光的像差校正器的实现将大大降低原子分辨率电子显微镜的制造成本,从而使其在不同的科学和工业领域得到广泛的应用。”