《突破 | 激子裂变的突破有望变革太阳能电池技术》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2023-06-25
  • 光伏发电,即光电转换是新时代发展可持续能源的关键技术之一。从马克斯·普朗克和阿尔伯特·爱因斯坦那个时代开始,我们就已经知道光和电都是以微小的、量子化的光子和基本电荷(电子和空穴)的形式出现的。传统的太阳能电池是将单个光子的能量转移到材料中的两个自由电荷。但有一种被称之为并五苯的材料可以将一个光子转化为四个电荷,这种过程被称为激子裂变。该技术的发现可以帮助提高太阳能电池的转化效率和性能,从而提高太阳能电池的功率和发电量,它对太阳能行业的影响将是深远而持久的。

    马克斯·普朗克学会弗里茨·哈伯研究所、柏林工业大学和朱利叶斯-马克西米利安-维尔茨堡大学的联合研究团队成功通过超快摄影拍摄到激子裂变中光电转换的图像,解决了几十年来关于这一过程机制的争论。该成果以“Orbital-resolved observation of singlet fission”为题发表在Nature 上(DOI: 10.1038/s41586-023-05814-1)。

    图1 有机半导体并五苯中激子裂变过程,每一个都由五个苯环组成。与通常的两个自由载流子不同,并五苯吸收光子会产生四个自由载流子,用橙色轨道表示

    该研究的主要作者、弗里茨·哈伯研究所马克斯·普朗克研究小组负责人、柏林工业大学实验物理学教授Ralph Ernstorfer表示,当并五苯被光激发时,材料中的电荷会迅速反应。但被吸收的这个光子是直接激发两个电子和空穴,还是最初只激发一个电子-空穴对,然后与另一个电荷对分享能量,在学术界中这是一个具有高度争议的问题。

    为了解开这个谜团,研究团队利用时间分辨光谱学(超快光谱学)和角分辨光谱,从而在飞秒(千万亿分之一秒)时间尺度上观察电子的动力学。这种超快电子摄像机使他们第一次能够捕捉到转瞬即逝的被激发电子的图像。

    该研究的第一作者、弗里茨哈伯研究所的Alexander Neef称,观察到载流子的图像对解释激子裂变过程十分重要。一个被激发的电子-空穴对不仅具有特定的能量,而且具有独特的模式,也就是轨道。为了理解单线态裂变的过程,确定载流子的轨道形状以及它们如何随时间变化是至关重要的。

    在得到激发电子的图像后,研究团队首次根据它们的轨道特征分析了受激载流子的动力学。Alexander Neef补充道,他们现在可以确定,在光子激发后只有一个电子-空穴对被激发,并确定了自由电荷载流子加倍过程的机制。

    维尔茨堡大学的Jens Pflaum教授称,解决激子裂变的第一步对于在光伏应用创新中成功实现这类有机半导体至关重要,从而进一步提高当今太阳能电池的转换效率。该团队为为这项研究提供了高质量的分子晶体,这样的进步将产生巨大的影响,因为太阳能和由这些第三代电池产生的太阳能将成为未来的主要能源。

相关报告
  • 《硅藻—太阳能电池技术突破的新途径》

    • 来源专题:集成电路
    • 编译者:shenxiang
    • 发布时间:2019-08-01
    • 硅藻,一种繁衍十分迅速的硅藻类植物,它们的无定型二氧化硅壳体以及独特的立体结构,可以使光在细胞内进行充分的光合作用。在人类发明硅基太阳能电池之前,自然界中的硅藻早已开始利用二氧化硅来收集太阳能。近年来,众多国内外研究人员就希望利用硅藻的光学特性来推动太阳能技术取得突破。 硅藻特殊结构发挥重要作用 藻类有200个门,10万多个种,大多数生活在海水中,能利用太阳能进行光合作用。藻类是世界上光能利用最成功、光能利用率最高的有机体,其能较少的反射太阳光,并通过网格毛孔捕获太阳能。 藻类高效利用阳光的最大秘密在于其外壳,其中单细胞的硅藻外壳是最佳模型。硅藻外壳是由结构极为复杂精密的二氧化硅组成10~50nm 的六边形微孔排列形成丝网状结构,复杂的结构能使射进的光线无法逃逸,这种纹饰繁密的藻壳不仅增强了硅藻的硬度和强度,使其具有能悬浮起来的机械性,而且提高了其运输营养物质和吸附、附着的生理功能,且阻止了有害物质进入,增强了光吸收率。 研究人员在很多具有分级多孔结构的生物材料中发现了天然的光子晶体效应,硅藻的特殊结构让它成为一种良好的光子晶体,能够大大提升光捕获效率,这种特性让硅藻在太阳能电池中发挥了重要的作用。 硅藻天然材料降低所需成本 硅藻这种微小生物对有机太阳能电池(相较于传统太阳能技术,这种技术成本更低)的设计有着独特的价值。因为设计这些电池的一个挑战是,它们需要非常薄的活性层(只有100到300纳米),而这限制了它们将光能转化为电能的效率。 解决这个问题的方案便是嵌入能够吸收与分散光的纳米结构来提高吸收水平,但这对于大规模生产来说太贵了。而这恰恰就是硅藻能够起作用的地方。经过数十亿年的适应性进化,它们已经尽可能优化了吸收光的能力。而且它们是自然界中最常见的浮游植物,这就意味着它们很便宜。硅藻在世界各地的海洋和淡水中非常普遍,因而成本非常低,所以它们成为改善光伏发电的理想选择。 硅藻有效提高能量转换效率 藻类外壳利用阳光的构筑是未来太阳能电池原材料和模型构筑的最佳供体。有机光伏太阳能电池具有由有机聚合物制成的活性层,这意味着它们比常规太阳能电池便宜,但它们的转换效率不太高,主要因为其有源层非常薄,通常需要小于300纳米,因此这限制了转换效率。 而利用硅藻的光学特性,将硅藻加入到染料敏化太阳能电池(是以低成本的纳米二氧化钛和光敏染料为主要原料,模拟自然界中植物利用太阳能进行光合作用,将太阳能转化为电能)的二氧化钛薄层后,能量转换效率是原转换效率的1.3-1.4倍(而把硅藻壳体加入到二氧化钛中烧结形成电池阳极,增加了光捕获和在电池中的散射性能,传统二氧化钛覆膜3遍的转换效率为3.8%,加入了硅藻壳体的二氧化钛转换效率可以达到5.26%)。 硅藻对于人类来说就是一个未开发的宝藏,除了在太阳能光伏材料上能有效的突破目前的能量转换效率,而且在其他领域还有着相同重要的应用。例如硅藻细胞代谢产生的多糖、蛋白质、色素、油脂等,使其在食品、医药、基因工程、液体燃料等多个领域都有极大的开发前景。 通过硅藻壳生产的微纳米二氧化硅是自然界独一无二、纯度极高的生物无机材料,也是最佳微纳生物平台材料,当然硅藻在养殖过程中也能吸收二氧化碳释放大量氧气,对环境有着巨大的贡献。
  • 《太阳能电池光电转换效率突破10%》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-07-27
    • 科技日报合肥7月26日电 (记者吴长锋)记者26日从中国科学技术大学获悉,该校陈涛教授、朱长飞教授团队与合作者合作,发展了水热沉积法制备硒硫化锑半导体薄膜材料,并将其应用到太阳能电池中,实现了光电转换效率10%的突破。这一成果日前发表在《自然能源》上。 硒硫化锑是近年来在光伏领域应用的一种新兴光伏材料,其带隙在1.1—1.7电子伏特范围内可调,满足最佳的太阳光谱匹配。同时,硒硫化锑具有较高的吸收系数,500纳米左右厚度的薄膜即能达到最佳吸收。因此,在超轻、便携式发电器件方面也具有潜在的应用。 鉴于硒硫化锑具有良好的稳定性和丰富元素储量,光电转换效率的进一步提升有望推进应用。这一研究成果所发展的水热沉积法在超临界的状态下水热沉积可以生成致密、平整且横向元素分布均匀的光吸收薄膜,从而有利于载流子的传输,结合光吸收、阴阳离子比例的调控以及点缺陷的控制,最终实现了光电转换效率的突破。从材料制备的角度来看,这项研究发展的水热沉积法是一种简便、低成本的薄膜制备方法。 《自然能源》审稿人给予该工作高度评价,认为这是一个里程碑式的效率,为硒硫化锑太阳能电池的发展带来新的曙光。