《新3D打印技术可显著增强材料》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 发布时间:2017-07-26
  • 美国德州农工大学(A&M)的研究人员通过应用传统的焊接概念,将3D打印部件中的亚毫米层粘合在一起,从而加强了3D打印部件。

    材料科学与工程系博士生Brandon Sweeney在一份声明中表示:“我以前很看好这项技术的巨大潜力,例如它可以缩短制造时间,使我们的CAD设计在几个小时内就可以被做出来。但遗憾的是,我们都知道这些部件的强度远远不够,无法得到实际的应用。”

    用3D打印机打印的物体由几层薄薄的材料组成,这种材料通常为塑料,通过层层堆积以形成所需的形状。然而,这些层容易发生断裂,当在诸如定制打印医疗设备等实际应用中使用时,这些部件的耐久性和可靠性就会出现问题。

    “我知道几乎整个行业都面临着这个问题,”Sweeney说,“目前,可以3D打印原型零件,看是否有某些东西适用于某种设计,但它们实际上也最多只能实现这个目的。

    他补充道:“主要意思就是,一个打印3D部件不能简单地用于焊接烤箱,因为它是塑料做的,会融化。”

    研究人员借鉴了传统上用于焊接部件的概念,即使用点热源将部件的界面连接在一起,仅需要极少的热量。需要使用特殊的材料来控制在小型打印部件中加热粘合的位点。

    Sweeney说:“我们所做的就是将一层薄薄的碳纳米管复合材料放在3D打印机单丝外面。当打印零件时,该薄层将嵌入所有塑料股线的界面。”

    “然后我们把它粘在微波炉里,我们在这项研究中使用了略微复杂的微波炉,并用红外摄像机监测其温度。”

    这项新技术目前正在申请专利,并处于测试模式,有可能用于进一步的工业和消费行业。

    原文链接:New 3D Printing Technique Significantly Strengthens Materials

相关报告
  • 《3D打印复合材料近期大事记》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-03-12
    • 3D打印市场正在蓬勃发展,其增长率达到两位数。数据表明,到2026年全球用于3D打印的复合材料收入将超过5亿美元,未来十年内复合材料将成为3D打印主要的市场机遇。 去年底,工信部工业文化发展中心增材制造(3D打印)研究院新材料研究所正式成立;今年,赢创推出用于更高温度3D打印的新型聚合物粉末;法国开发世界上首个3D打印空心螺旋桨片……最近这一时期,还有哪些与复材相关的3D打印大事件?我们一起来看一看吧。 阿科玛携3D打印最新协作创新成果 亮相2019 TCT亚洲展 日前,阿科玛亮相上海亚洲3D打印、增材制造展览会(TCT Asia),展示其在先进材料领域的最新协作创新成果。这些先进材料覆盖所有主要3D打印技术,包括选择性激光烧结、熔融沉积制造和光固化。 “阿科玛3D打印解决方案”平台持续为增材制造领域研发世界领先的先进材料解决方案组合,同时展示其在整个3D生态系统中的创新合作网络。 " “阿科玛在用于主流3D打印工艺上的旗舰先进材料已有盛名,但这个不断发展的市场需要的不仅仅是材料。在整个产业链中建立核心战略合作伙伴关系并加以利用至关重要。其中协同是关键所在。此次展会我们带来的数项产品技术,凸显了创新公司互相协同合作可取得的成果。”Guillaume de Crevoisier,阿科玛3D打印全球业务总监表示。 阿科玛将展示其与Autodesk和Farsoon在高性能选择性激光烧结(SLS)制造领域的协作成果。这项成果集合了Autodesk最高水平的制造软件和Farsoon生产的先进硬件,并充分利用阿科玛Rilsan®聚酰胺11粉末的卓越强度和耐用性。 阿科玛旗下沙多玛业务单元将推出多项开拓性解决方案,这些解决方案也是与下游客户共同开发的。新型液态树脂产品具有低刺激性和低气味的特点,适用于高性能牙科应用,而其他新型创新产品则专为鞋底设计,具有更好的弹性和韧性。 针对亚洲珠宝市场的特殊需求,阿科玛推出全新N3xtDimension®铸造树脂,具有出色的熔体,并且在铸造过程后残留量极少。 赢创推出用于更高温度3D打印的 新型聚合物粉末 特种化学品公司赢创正积极开拓极具吸引力的3D打印市场,并开发了一种新型聚合物粉末。作为旗下聚酰胺6系列的新产品,该粉末适用于更高温度范围的应用需求,进一步扩展了赢创粉末型3D打印技术高性能材料产品系列。 赢创的新型聚酰胺粉末具有高机械强度以及优异的耐化学性和耐温性。其热变形温度(HDT B)约为195°C。此外,粉末材料的低吸水率(低于3%)使其脱颖而出,这一特性对3D打印材料的可加工性和打印出的3D组件的尺寸稳定性具有积极影响。 “适用于单个打印机并且能够应用于更高温度范围的新型、即用型材料助推3D打印行业向批量生产迈进了一步。”专注选择性激光烧结(SLS)的TPM 3D中国技术公司创始人兼董事长Mark Zhao说道。“我们看到对可应用于更高温度范围的3D打印解决方案的需求十分强烈,例如汽车和电子行业。因此,我们很高兴与赢创一起推出新型温度稳定性材料。” 赢创聚酰胺6系列中的新型聚合物粉末具有近乎圆形的晶粒形状,优异的流动性和应用性能,适用于所有粉末型3D打印技术。赢创的专利工艺被用于其马尔工厂生产高温材料。 法国开发世界上首个 3D打印空心螺旋桨片 去年,法国国防承包商海军集团(Naval Group)与法国工程学院南特中央理工学院(Centrale Nantes)合作开发了全球第一片全尺寸3D打印军用螺旋桨,今年两家继续合作,开发了世界上第一台3D打印空心螺旋桨片。RAMSSES(可持续和高效船舶先进材料解决方案的实现和演示)螺旋桨项目是欧洲H2020(欧洲工业数字化技术、欧洲数据基础设施、5G、下一代互联网等技术研究领域面临的挑战和未来研发计划)的一部分,由欧盟委员会资助,旨在利用3D打印等新技术来减少碳排放对环境的影响,进行大型海军舰艇的制造和运营。 " 使用电弧增材制造技术 (Wire and Arc Additive Manufacture, WAAM) ,该集团计划3D打印直径达6米的舰艇螺旋桨。本次生产的测试件为原型比例的三分之一,重约300千克,制作时间不到100小时。分析表明,相比传统工艺,全尺寸3D打印桨片可以减轻40%的重量!不仅需要更少的材料,更降低了发动机的负荷,可进一步降低燃料消耗并因此降低船舶的环境影响。 此外,Sirehna(Centrale Nantes衍生公司和Naval集团的子公司)对螺旋桨片设计进行了改进,提高了效率和耐用性,同时减少了对海洋动物产生负面影响的辐射噪音和振动。 RAMSSES项目螺旋组件事业部经理Patrice Vinot表示:“虽然增材制造在工业上越来越普遍,但复杂部件的编程和设计,如船用螺旋桨叶片,对我们海军集团的的团队和合作伙伴来说是一个巨大的挑战,这个新案例研究揭示了3D打印工艺过程的潜力,这意味着预计未来的螺旋桨将具有无与伦比的性能。参与RAMSSES等项目并协调我们的学术和行业合作伙伴网络,将使我们能够长期将3D打印引入造船厂。” 南特中央理工学院快速制造平台负责人,增材制造国际专家Jean-YvesHascoët教授解释说:“在快速制造平台上,过去35年来一直在开发增材制造。所有这些年的研究都是通过像RAMSSES这样的项目实现的,促使我们的技术真正转移到工业环境中。海军行业正在缓慢但肯定地采用3D打印,以确保未来的‘顺利航行’。” EAD工业级连续光纤CFAM Prime 3D打印机 入围JEC创新大奖 CFAM Prime 3D打印机是一种新的3D打印技术,它将颗粒挤压与预浸渍纤维细丝相结合,打印纤维增强热塑性组件。挤出机设计过程几乎所有的热塑性塑料(最高温度400℃)。 测试了各种热塑性塑料,如PETG、PP、PPS、ABS、PC、PB和PEEK,其中一些颗粒已经含有一定比例的短纤维。连续纤维预先浸渍了用于该应用的热塑性塑料。因此,CEAD生产自己的连续纤维长丝浸渍所需的热塑性塑料,很像目前使用的UD带。该打印头可将熔融的热塑性塑料与连续预浸渍纤维相结合,打印复合材料。 " 该程序是独一无二的,并获得了专利。这台机器不需要操作员也能运转24小时。全封闭,有闭环温度控制系统和专用冷却系统。这使得CFAM Prime成为一台专用的生产机器,并对打印对象的质量进行完全控制。 与传统的生产方法相比,使用CFAM给了设计者更多的设计自由。复杂的内部通道,复杂的曲率和安装和装配功能可以集成到一个设计。允许4 x 2x1.5m的体积,使得CFAM Prime对于低批量的大型复杂产品非常有利。该方法减少了生产步骤。在此过程中省去了昂贵的模具,并且由于该过程主要是自动化的,因此减少了人工成本。由于减少了工艺步骤,从而缩短了大型复杂产品的交货期。 这一创新被选为2019年JEC创新大奖3D打印类的入围作品。获奖名单将于2019年3月13日下午4时30分在JEC World 2019大会上公布。 Stratasys复合材料 亮相法国JEC 在即将举办的JEC展会上,Stratasys将展示其FDM和PolyJet技术在整个产品开发过程中的通用性,从全功能原型到工具应用和最终生产部件。参观者将能够看到来自不同行业的公司在生产操作中实施增材制造时所能享受的显著时间和成本效益。 Stratasys对高温材料的开发,以及FDM生产3D打印机产量的提高,使其能够在数小时或数天内制造出复杂的复合叠层,而不是像传统制造那样需要数周或数月的时间。 " 作为JEC World在“创新行星”领域的应用展示计划的一部分,Stratasys将展示一款Santa Cruz自行车,以及使用3D打印工具生产的许多碳纤维部件。通过使用Stratasys的FDM 3D打印技术,该公司能够比以往任何时候都更快地生产出功能完备的原型机,并以更快的速度迭代更多的设计,这大大简化了其整体设计流程。此外,该公司通过按需3D打印高性能复合材料工具,克服了传统工具在低批量复合产品生产中的局限性,从而大大加快了产品的交付时间,成本也大大降低。 Stratasys还展示FDM尼龙12CF令人印象深刻的机械性能如何使工程师能够探索从传统金属零件到3D打印塑料复合材料的过渡。这种填充碳纤维的热塑性塑料含有35%的切碎的碳纤维,它的强度足以取代金属,使设计师能够开发出更轻的功能设计。FDM尼龙12CF的高刚度重量比非常适合汽车、航空航天、休闲用品和工业制造部门的功能性能测试需求。 Fortify和DSM合作开发用于 3D打印的高性能复合材料 总部位于波士顿的先进制造公司Fortify与营养、健康和可持续生活的全球目标主导科学公司DSM宣布,他们将开发用于结构件3D打印的高性能复合材料。 此次合作将Fortify的数字复合材料制造(DCM)平台和光纤加工专业知识与帝斯曼在3D打印树脂和配方开发方面的应用知识相结合。他们将共同开发尖端的高性能复合材料,通过Fortify硬件进行分销。通过为3D打印部件带来强大的机械和温度特性,这些材料非常适用于众多市场中的各种应用:汽车、航空航天、电子、快速模具、夹具和夹具。 帝斯曼增材制造副总裁Hugo da Silva表示:“在帝斯曼增材制造业,我们相信与行业合作伙伴的合作是推动行业发展的关键,与Fortify合作,使我们能够开发用于DLP技术的高性能复合材料,使该技术适用于要求苛刻的应用中的功能部件。” 通过利用DCM,Fortify在硬件和纤维加工方面的专业知识和专业知识将立即提高DSM树脂的机械性能。此外,Fortify和DCM平台将成为帝斯曼3D打印材料的分销渠道。 大多数3D打印平台都是关闭的,将树脂的使用限制在3D打印机公司自己生产的树脂上。通过Fortify光纤平台,Fortify邀请供应商与Fortify材料科学家和工程师一起开发高性能树脂。合作伙伴可以正确利用复合材料的强大功能,而无需构建Fortify提供的内部专业知识。(来源:中国纤维复材网) 复合材料3D打印传感器 可检测水含量 由马德里自治大学(UAM)的Pilar Amo-Ochoa带领的西班牙-以色列科学家团队开发了一种多功能3D打印塑料复合传感器,能够检测微量水。 3D打印的材料是无毒的,在潮湿条件下颜色从紫色变为蓝色。 科学家Michael Wharmby解释说:“了解特定环境或材料中存在多少水是很重要的,例如,如果油中含有过多的水,则可能无法很好地润滑机器,如果燃油中含有过多的水,则可能无法正常燃烧。” 科学家的新型传感器材料是一种所谓的铜基配位聚合物,一种水分子与中心铜原子结合的化合物。他们使用Deutsches Elektronen-Synchrotron(DESY)光源PETRA III来分析加热时材料的变化。“将化合物加热到60摄氏度时,颜色从蓝色变为紫色,”Pilar Amo-Ochoa报道。将材料加热至60℃,除去与铜原子结合的水分子,最终引起颜色变化。 “这种变化可以通过将其置于空气中,将其置于水中,或将其置于含有微量水的溶剂中来逆转。” 在理解了这一点之后,我们能够对这种变化的物理模型进行建模,”马德里材料科学研究所(ICMM-CSIC)的JoséIgnacioMartínez解释道。然后科学家们将铜化合物混合成3D打印墨水,并在几种不同的形状下打印传感器,这些传感器在空气和水中进行测试。这些测试表明,3D打印物体对水的存在比对化合物本身更敏感。在溶剂中,打印传感器可在不到两分钟的时间内检测到0.3%至4%的水。 如果在无水溶剂中干燥或通过加热干燥,则材料变回紫色。详细的调查表明,即使在许多加热循环中材料也是稳定的,并且铜化合物均匀地分布在整个打印传感器中。此外,该材料在空气中在至少一年内是稳定的,并且在生物相关的pH范围内也是5至7。 “这项工作展示了第一个由无孔配位聚合物制成的3D打印复合材料,”共同作者马德里自治大学的FélixZamora说。“在功能性3D打印领域,它打开了使用这一大系列化合物的大门,这些化合物易于合成并具有有趣的磁性,导电性和光学性质。” 正如科学家在“Advanced Functional Materials”杂志上所写的那样,这一发展为新一代3D可打印功能材料的产生打开了大门。
  • 《3D打印技术在航天复合材料制造中的应用》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-03-20
    • 复合材料的需求将以更快的速度增长,而其高成本成为制约复合材料广泛应用的重要瓶颈。低成本复合材料制造技术是目前世界上复合材料研究领域的一个核心问题。提高复合材料的性能价格比,除了在原材料、装配与维护等方面进行研究改进外,更重要的是降低复合材料制造成本。 3D打印 近年来,3D打印技术的出现为制造业开辟了一个全新的思路,不同于传统制造业的减材制造和等材制造,它通过添加材料的方式可以快速地成型复杂形状产品并且实现极大限度的利用原材料。 航天器的发射成本高,有效载荷的质量对发射成本影响巨大,因此有效载荷在结构设计和材料选用时特别注重结构效率。碳纤维复合材料具有比强度高、比模量大、热稳定性好、可设计性强等特点,优异的综合性能正是追求高性能、结构质量效率优化的航天产品所需。 目前,应用在航天光学遥感器的碳纤维复合材料产品涵盖遥感器的各个部位,如相机镜筒、相机支架、遮光罩、桁架等。所用树脂以环氧树脂和氰酸酯树脂为主,增强材料以连续碳纤维为主。根据具体产品特点和工艺特点,按照产品的性能要求和厚度要求将预浸料以一定的铺层顺序和铺层层数在模具上叠放形成坯体,再将坯体放入热压罐或热压机在高温环境下进行数小时的高温高压固化。 航天遥感器复合材料及制造工艺主要有以下特点: 1)为保证产品的力学性能,增强体采用连续纤维; 2)树脂基体环氧树脂和氰酸酯树脂均为热固性树脂,需要在特定的固化温度和压力下进行数小时固化(发生化学交联反应)以形成稳定的网状交联聚合物; 3)预浸料叠层坯体内部松散,为排出坯体中的空气和其他小分子,需对坯体在加热的同时施加高压,以提高制品的致密性,保证制品的力学性能; 4)对于复杂结构产品,为保证其力学性能,预浸料铺层设计往往需要多个平面或多个部位进行连续铺层,如薄壁加筋镜筒需保证法兰环和镜筒筒体的连续、加强筋与镜筒筒体的连续等,多向接头中要保证各端头周向连续、各端头之间的根部连续等。 3D打印技术 3D打印也叫增材制造,区别于传统的减材或等材加工制造方法,它是采用材料逐层累加的方法制造实体零件。该技术是在现代CAD/CAM技术、激光技术、计算机数控技术、信息技术、精密伺服驱动技术以及新材料与物理化学技术的基础上集成发展起来的。 其工作原理是将物理实体的计算机三维模型离散成一系列的二维层片,利用精密喷头或激光热源,根据层片信息,在数字化控制驱动下,将熔覆的成型材料通过连续的物理层叠加固化,逐层增加材料来生成三维实体产品。 在各种3D打印技术中,能够进行复合材料3D制造的主要有选区激光烧结(SLS)、熔融沉积成型(FDM)、分层实体制造(LOM)以及立体光刻技术(SL)。 SLS制造复合材料的主要方法是混合粉末法,即基体粉末与增强体粉末混合,激光按设计图纸的截面形状对特定区域的粉末进行加热,使熔点相对较低的基体粉末融化,从而把基体和增强体粘接起来实现组分的复合。该方法存在的问题是混合粉末中两种材料的密度不同,易出现沉降使得制品成分不均匀。通过合成单一复合材料粉末进行技术改进,制得的复合材料粉末将能克服混合粉末的易沉降、不均匀等问题从而能够制得品质更高的制品。 FDM工艺制造复合材料是预先将纤维和树脂制成预浸丝束,再将预浸丝束送入喷嘴,丝束在喷嘴处受热融化并按设计轨迹堆放在平台上形成一层层材料,层与层之间通过树脂部分或完全融化形成连接。FDM技术所用的复合材料预浸丝束必须满足组分、强度以及低粘度等要求,一般需要在复合材料中添加塑性剂增加流动性。 LOM技术与FDM类似,需预先制备单向纤维/树脂预浸丝束并排制成无纬布即预浸条带,预浸条带经传送带送至工作台,在计算机的控制下,激光沿三维模型每个截面的轮廓线切割预浸条带,逐层叠加在一起,形成三维产品。 利用SL制造复合材料,首先需将光敏聚合物与增强颗粒或纤维混合成混合溶液,利用紫外激光快速扫描存于液槽中的混合液,使光敏聚合物迅速发生光聚合反应,从而由液态变为固态,然后工作台下降一层薄片的高度,进行第二层激光扫描固化,如此反复,形成*终产品。SL制造复合材料存在增强颗粒发生沉淀导致颗粒分布不均匀、溶液中泡沫导致固化后孔洞的产生、颗粒的反射使得激光吸收能量变低因而需要更长的照射时间等问题。 复合材料3D打印技术进展 热塑性树脂具有加热变软、冷却固化的工艺特性,易于实现增材制造,在3D打印市场以热塑性塑料为主,同样,在复合材料3D打印技术中,以热塑性树脂为基体的复合材料相对也是主要的研究对象,增强材料有短切纤维和连续纤维。 德国、美国等3D打印公司及我国华曙高科等分别研制了可用于SLS技术的短切纤维/热塑性树脂复合材料粉末并实现商业化。 美国MarkForged公司2014年初研发了连续碳纤维增强热塑性复合材料3D打印设备MarkOne,打印出了碳纤维增强尼龙复合材料。打印机具有两个喷头,一个喷头输送热塑性树脂(尼龙或聚乳酸),一个喷头输送连续的预浸碳纤维丝或预浸玻璃纤维丝,预浸纤维丝涂有特别为打印机开发的热塑性树脂,两个喷头轮流工作,用基于FDM的工艺沿X/Y平面铺放树脂和预浸丝束,实现纤维和树脂的复合,纤维可以按需要取向或仅在需要的地方铺放。目前,该设备仅能实现X/Y方向纤维取向,尚不能实现Z向取向。MarkOne可打印尺寸为0.6m×0.4m×0.3m。 美国Stratasys公司和美国能源部(DOE)橡树岭国家试验室合作开发量产碳纤维复合材料FDM制造技术。合作分为3个阶段,第一阶段研究在FDM过程中如何放入碎纤维以及如何调整材料的各种机械性能,第二至第三阶段研究集中于在中心线上开工制造连续碳纤维复合材料以及进一步的处理。 哈佛大学研制了适用于3D打印的环氧树脂,实现了热固性树脂的3D打印。为改善树脂粘度,研究人员添加了纳米粘土、二甲基磷酸酯、碳化硅晶须和短切碳纤维,以咪唑基离子做固化剂,极大地拓展了树脂的打印窗口,使树脂在长达数周的打印窗口期内粘度不会显著增加。通过控制纤维长径比和喷嘴直径,使填料在剪切力和挤出流的作用下发生取向,实现了填料取向的控制,获得了取向的纤维。打印好的部件先在较低的温度下预固化,然后从基板上移出再进行进一步高温固化。 航天用树脂基复合材料3D打印技术分析 目前复合材料3D打印技术以短纤维/热塑性复合材料为主,材料和设备实现了商业化,而热固性基复合材料仅在试验室实现了短切纤维增强复合材料的3D打印。结合航天遥感器复合材料的产品特点,连续纤维增强热固性复合材料3D打印技术在打印材料、多维连续打印、预固化功能等方面亟待突破。 亟待突破的方面 1)开发适应性的打印材料。复合材料3D打印过程要求打印材料具有适当的粘度、流动性、长的操作时间、短的成型时间,因此需对现有航天复合材料材料体系进行适应性开发,对材料体系进行改进,以提供满足3D打印技术和航天应用要求的材料。 2)突破纤维多维连续打印。复合材料3D打印设备亟需突破在多维方向的连续堆积,如设置五轴/六轴联动打印平台通过转动平台实现多维连续打印,以满足航天复杂结构产品多个平面、多个部位的连续铺层要求。 3)实现预压实功能。热固性树脂基复合材料需在高温高压下实现树脂基体的固化和制件的致密化,可在打印一定层数后在设备内对坯体进行预压实和加热,提高打印中间过程的致密性,打印完成后再将坯体移至固化设备进行最终固化。 采用低成本技术是降低复合材料产品成本的有效途径之一,3D打印技术通过增加材料实现产品的制造,能够极大限度的发挥材料的利用率,降低复合材料生产成本。 此外,对于复杂结构复合材料产品,3D打印技术还可以减小对工装的依赖,缩短加工时间,同时还可以实现整体成型、减少装配时间,研究3D打印技术在航天复合材料的应用具有重大工程意义。对于航天遥感器所用的连续纤维增强热固性树脂复合材料,3D打印需解决打印材料、纤维多维连续打印、预固化功能等问题。