《INFECTION,3月5日,Identification of the hyper-variable genomic hotspot for the novel coronavirus SARS-CoV-2》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-03-08
  • Identification of the hyper-variable genomic hotspot for the novel coronavirus SARS-CoV-2

    FengWen, HaiYu, JinyueGuo, YongLi, KaijianLuo, ShujianHuang

    Show more

    https://doi.org/10.1016/j.jinf.2020.02.027

    Dear editor

    A recent study in this journal studied the genomes of the novel SARS-like coronavirus (SARS-CoV-2) in China and suggested that the SARS-CoV-2 had undergone genetic recombination with SARS-related CoV1. By February 14, 2020, a total of 66,576 confirmed cases of COVID-19, people infected with SARS-CoV-2, were reported in China, leading to 1,524 deaths, per the Chinese CDC (http://2019ncov.chinacdc.cn/2019-nCoV/). Several full genomic sequences of this virus have been released for the study of its evolutionary origin and molecular characteristics2, 3, 4. Here, we analyzed the potential mutations that may have evolved after the virus became epidemic among humans and also the mutations resulting in the human adaptation.

  • 原文来源:https://www.sciencedirect.com/science/article/pii/S0163445320301080
相关报告
  • 《Nature,5月4日,A human monoclonal antibody blocking SARS-CoV-2 infection》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-05-05
    • A human monoclonal antibody blocking SARS-CoV-2 infection Chunyan Wang, Wentao Li, Dubravka Drabek, Nisreen M. A. Okba, Rien van Haperen, Albert D. M. E. Osterhaus, Frank J. M. van Kuppeveld, Bart L. Haagmans, Frank Grosveld & Berend-Jan Bosch Nature Communications volume 11, Article number: 2251 (2020) Abstract The emergence of the novel human coronavirus SARS-CoV-2 in Wuhan, China has caused a worldwide epidemic of respiratory disease (COVID-19). Vaccines and targeted therapeutics for treatment of this disease are currently lacking. Here we report a human monoclonal antibody that neutralizes SARS-CoV-2 (and SARS-CoV) in cell culture. This cross-neutralizing antibody targets a communal epitope on these viruses and may offer potential for prevention and treatment of COVID-19.
  • 《Science,5月1日,Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2)》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-05-01
    • Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2) Ruiyun Li1,*, Sen Pei2,*,†, Bin Chen3,*, Yimeng Song4, Tao Zhang5, Wan Yang6, Jeffrey Shaman2,† See all authors and affiliations Science 01 May 2020: Vol. 368, Issue 6490, pp. 489-493 DOI: 10.1126/science.abb3221 Abstract Estimation of the prevalence and contagiousness of undocumented novel coronavirus [severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2)] infections is critical for understanding the overall prevalence and pandemic potential of this disease. Here, we use observations of reported infection within China, in conjunction with mobility data, a networked dynamic metapopulation model, and Bayesian inference, to infer critical epidemiological characteristics associated with SARS-CoV-2, including the fraction of undocumented infections and their contagiousness. We estimate that 86% of all infections were undocumented [95% credible interval (CI): 82–90%] before the 23 January 2020 travel restrictions. The transmission rate of undocumented infections per person was 55% the transmission rate of documented infections (95% CI: 46–62%), yet, because of their greater numbers, undocumented infections were the source of 79% of the documented cases. These findings explain the rapid geographic spread of SARS-CoV-2 and indicate that containment of this virus will be particularly challenging.