《Cell | 任务驱动的神经网络模型预测本体感觉的神经动力学》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-03-28
  • 2024年3月21日,洛桑联邦理工学院的 Alexander Mathis 团队在国际顶尖学术期刊 Cell 上发表了题为Task-driven neural network models predict neural dynamics of proprioception 的研究论文。

    你的大脑如何知道身体不同部位的位置和运动?这种感觉被称为本体感觉,它类似于“第六感”,让我们能够自由移动,而无需不断地盯着我们的四肢。本体感觉涉及到嵌入在我们肌肉中的复杂传感器网络,将肢体位置和运动信息传递回我们的大脑。然而,我们对大脑如何整合从肌肉接收到的不同信号知之甚少。该研究通过探索我们的大脑如何创造身体位置和运动的连贯感,为大脑如何实现本体感觉(第六感)提供了新解释。

    论文通讯作者 Alexander Mathis 表示,人们普遍认为,感官系统应该利用统计学,这一理论可以解释视觉和听觉系统的许多特性,为了将这一理论推广到本体感觉,我们使用肌肉骨骼模拟器来计算分布式传感器的统计数据。

    研究团队使用这种肌肉骨骼建模来生成上肢的肌肉纺锤信号,以生成“大规模、自然的运动指令”的集合。然后,他们使用这个指令在16个计算任务上训练了数千个“任务驱动”的神经网络模型,每个任务都反映了关于本体感觉通路进行计算的科学假设,其中包括脑干和体感皮层的部分。该方法使研究团队能够全面分析不同的神经网络架构和计算任务如何影响本体感觉信息的“类脑”表征的发展。

    研究团队发现,在预测肢体位置和速度的任务上训练的神经网络模型是最有效的,这表明我们的大脑优先整合分布式肌肉纺锤体的输入来理解身体运动和位置。 该研究强调了任务驱动建模在神经科学中的潜力。与传统方法不同,任务驱动模型可以提供对感官处理潜在计算原理的见解。

相关报告
  • 《Nature | 在执行类似行为的动物中保存神经动力学》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2023-11-13
    • 本文内容转载自“ CNS推送BioMed”微信公众号。原文链接: https://mp.weixin.qq.com/s/qT6raNDpEzYmosEDNUVEvw 2023年11月8日,帝国理工学院等机构的研究人员在Nature发表题为Preserved neural dynamics across animals performing similar behaviour的文章。 相同物种的动物表现出相似的行为,这些行为有利地适应了它们的身体和环境。这些行为是由进化时间尺度上的选择压力在物种水平上形成的。然而,目前还不清楚这些共同的行为适应是如何从每个人的特质神经回路中出现的。神经回路的整体组织在个体之间得以保留,因为它们具有共同的进化指定的发育程序。这种在电路水平上的组织可能会限制神经活动,从而导致整个神经种群的低维潜在动力学。 该研究建议物种内共享的电路水平约束将导致整个个体之间适当保存的潜在动力学。研究人员分析了来自猴子和小鼠运动皮层的神经种群的记录,以证明当来自同一物种的个体表现出相似的行为时,它们的神经动力学令人惊讶地得以保留。当动物有意识地计划未来的运动而没有明显的行为并能够解码不同个体之间的计划和正在进行的运动时,神经种群动态也得以保留。此外,研究人员发现保留的神经动力学延伸到皮层区域以外的背侧纹状体,这是一个进化上更古老的结构。最后,研究人员使用神经网络模型来证明行为相似性对于这种保留是必要的,但还不够。研究人员认为,这些新兴动态是由大脑发育的进化约束引起的,因此反映了行为神经基础的基本特性。
  • 《Nature | 运动神经元通过本体感觉雕刻产生姿势目标运动》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-03-28
    • 2024年3月20日,加州大学圣芭芭拉分校等机构的研究人员在Nature在线发表题为Motor neurons generate pose-targeted movements via proprioceptive sculpting的文章。 运动神经元是大脑控制身体运动的最终共同途径,是构成所有运动的基本元素。然而,在自然运动过程中,单个运动神经元如何参与控制仍不清楚。 该研究从解剖学和功能上描述了控制果蝇头部运动的运动神经元的个体作用。与直觉相反的是,研究人员发现单个运动神经元的活动会根据头部的起始姿势,使头部向不同方向旋转,这样头部就会收敛到一个由受刺激运动神经元的身份决定的姿势。反馈模型预测这种收敛行为是运动神经元驱动与本体感觉反馈相互作用的结果。研究人员发现并从基因上抑制了一类本体感觉神经元,它改变了反馈模型预测的运动神经元诱导的收敛。 这些数据为大脑如何控制运动提供了一个框架:大脑不是通过激活一组固定的运动神经元直接在给定的方向上产生运动,而是通过在持续的本体感觉-运动回路中添加偏见来控制运动。