《Cell | 揭示成体肺泡干细胞的再生起源》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-04-06
  • 2024年4月4日,中国科学院大学杭州高等研究院/中国科学院分子细胞科学卓越创新中心周斌团队在Cell 在线发表题为Tracing the origin of alveolar stem cells in lung repair and regeneration的研究论文

    肺泡2型(AT2)细胞是肺泡上皮的干细胞。先前的遗传谱系追踪研究报道了损伤后AT2细胞的多个细胞起源。然而,传统的基于Cre-loxP的谱系追踪存在非特异性标记的局限性。

    该研究引入了一种双重组酶介导的交叉遗传谱系追踪方法,能够在肺稳态、损伤和修复过程中精确研究AT2细胞的起源。该研究发现AT1细胞处于终末分化状态,在肺损伤和修复后不向AT2细胞分化。club细胞、细支气管肺泡干细胞(BASCs)和现有的AT2细胞的独特而同时的标记揭示了它们在损伤后对AT2细胞的确切贡献。在机制上,Notch信号抑制促进BASCs,但在肺修复过程中损害club细胞产生AT2细胞的能力。这种交叉遗传谱系追踪策略具有更高的精度,使得能够阐明各种上皮细胞类型在损伤后肺泡再生中的生理作用。



  • 原文来源:https://www.cell.com/cell/fulltext/S0092-8674(24)00302-7
相关报告
  • 《Cell Stem Cell:新研究揭示COVID-19如何可能引发致命的肺部炎症》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-09-26
    • 为了应对由新型冠状病毒SARS-CoV-2引起的COVID-19大流行,需要有能够复制人类疾病发展、识别潜在靶点和进行药物测试的模型。具体来说,鉴于多种呼吸道上皮细胞被认为是病毒侵入的靶点,因此,获得主要的人类肺部体外模型系统是优先考虑的。 如今,在一项新的研究中,来自美国波士顿大学的研究人员研究了由人诱导性多能干细胞(iPSC)产生的被SARS-CoV-2感染的称为2型肺泡细胞(alveolar type 2 cell)的肺细胞,发现这种病毒最初抑制了这些肺细胞利用干扰素召唤免疫系统来对抗病毒入侵者的能力,并激活了一种称为NFkB的炎症通路。相关研究结果于2020年9月18日在线发表在Cell Stem Cell期刊上,论文标题为“SARS-CoV-2 Infection of Pluripotent Stem Cell-derived Human Lung Alveolar Type 2 Cells Elicits a Rapid Epithelial-Intrinsic Inflammatory Response”。 论文共同通讯作者、波士顿大学再生医学中心主任Darrell Kotton博士解释道,“这些被感染的肺细胞会产生炎性蛋白。在感染者的体内,这些蛋白推动了肺部炎症水平的上升。” 根据这些研究人员的说法,这些被感染的肺细胞发出的炎症信号会吸引免疫细胞大军进入充满被感染细胞、死亡细胞和垂死细胞的肺组织。Kotton补充道,“我们的数据证实,SARS-CoV-2阻止细胞在感染开始后的早期激活免疫系统的一个抗病毒分支。这些细胞通常会发出的信号,即它们在疾病威胁下分泌的一种名为干扰素的微小蛋白,反而被延迟了几天,这让SARS-CoV-2有足够的时间来传播和杀死细胞,从而引发死亡细胞碎片堆积和其他炎症。” 这些数据是基于这些研究人员在论文共同通讯作者Elke Mühlberger博士的实验室进行的实验。Kotton和波士顿大学再生医学中心的其他成员利用人ipsC细胞培育出复杂的人类肺组织模型---称为“肺部类器官(lung organoids)”的肺细胞三维结构。他们利用这种肺部类器官来研究一系列慢性和急性肺部疾病。 在论文共同第一作者Jessie Huang博士、Kristy Abo学士、Rhiannon Werder博士和Adam Hume博士的领导下,这些研究人员对以前用于研究吸烟影响的实验模型加以改进,用来研究肺部组织中的冠状病毒SARS-CoV-2。然后将活的冠状病毒液滴添加到2型肺泡细胞的顶部,这种病毒从空气中感染这些肺细胞,就像当含这种病毒的空气被吸入体内时,这种病毒感染肺部内的细胞一样。论文共同通讯作者、波士顿大学再生医学中心医学副教授Andrew Wilson博士说,“这种由人类ipsC产生的2型肺泡细胞对空气的适应性,即所谓的'气-液界面(air-liquid interface)'细胞培养,是一个关键的进步,使得我们能够模拟SARS-CoV-2如何进入受影响最严重的患者肺部深处的细胞,这就使得这个有临床意义的系统可以了解这种疾病如何伤害患者肺部。” Wilson和Kotton,也是在波士顿医学中心照顾COVID-19肺炎患者的肺科和重症监护医生,同时也带领他们的实验室生产出人类肺细胞,然后将这些细胞运输到波士顿大学国家新兴传染病研究实验室(NEIDL)。在那里,Hume穿着BSL-4套装开展细胞感染实验。 Mühlberger补充道,“这些细胞是一个研究SARS-CoV-2感染的极佳平台。它们很可能反映了COVID-19患者的肺细胞中发生的事情。如果你观察到SARS-CoV-2对这些细胞造成的伤害,你肯定不想得病。”
  • 《Nature | 利用单细胞和空间转录组揭示肺腺癌最早的细胞起源》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-02-29
    • 2024年2月28日,美国德克萨斯大学MD安德森癌症中心的王凌华教授和Humam Kadara教授的合作团队在Nature在线发表了题为 An atlas of epithelial cell states and plasticity in lung adenocarcinoma的文章。 肺癌是全世界癌症死亡率最高的恶性肿瘤之一, 其中肺腺癌(Lung adenocarcinoma, LUAD)为最常见的组织学类型。虽然近年来早期检测手段的进步使得越来越多的肺腺癌患者能够得到早期诊断,但现有的治疗手段的预后效果仍不理想。另一方面,近年来针对肺癌,尤其是肺腺癌的前沿研究存在局限性,如样本数量有限,又如单细胞测序规模相对较小,导致可供分析的上皮细胞数量有限。这些现状突显了对早期肺腺癌进行系统性深入研究的紧迫性。深入理解早期肺腺癌发生发展背后的细胞机制对于寻找新的潜在治疗靶点和制定有效的早期干预策略至关重要。 该研究的主要成果是在早期肺腺癌组织和癌旁区域发现了一群携带KRAS致癌基因突变的,KRT8表达阳性的肺泡中间态细胞(KRT8+ alveolar intermediate cells,KACs)。通过和Jichao Chen教授合作,该团队在基因工程小鼠模型中对肺泡上皮细胞进行了谱系标记和追踪,并证实了KACs最终可转化为肺腺癌细胞。这项研究不仅为开发针对早期肺腺癌的检测和预防策略提供了新的启示,也为推动在最早阶段检测甚至阻断肺腺癌的发展开辟了新的研究方向,并且这项研究工作是迄今为止关于早期未经治疗干预的肺腺癌在上皮细胞规模和整合数据类型上最大和最全面的单细胞研究。