《百度谷歌等联合推出机器学习基准 加速AI软硬件发展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-05-07
  • 5月2日,由包括百度、谷歌、斯坦福大学、哈佛大学在内的多家企业和高校联合发布了一套用于测量和提高机器学习软硬件性能的国际基准MLPerf。其巨大的学术和产业价值获业界肯定,被认为不仅将加速推进机器学习硬件+软件相关技术创新,更将对整个AI领域的研发思路、投资布局带来长期影响。

    近几年AI在全球范围内备受关注,机器学习呈现爆发性发展,软硬件系统也需要快速发展演变以满足其要求。随着研究人员不断推出用来处理机器学习任务的硬件设备和软件框架,业界对新一代基准的需求应运而生。

    此次发布的MLPerf基准将主要用来测量训练不同深度神经网络所需要的时间,这些神经网络所执行的任务包括物体识别、语言翻译以及经典的下围棋等。基准所统计的相关数据将为AI基础研究和行业应用提供重要参考,例如帮助算法工程师优化模型,协助硬件厂商提高产品性能等,从而促进AI的长期突破和创新。作为MLPerf基准的发起方之一,百度公司副总裁王海峰也评论称大型公司也可以凭借该基准来优化资源配置。“AI正在赋能百度的一系列产品和服务。MLperf这样的基准使我们能够对不同平台进行比较,从而做出更好的技术选择。”

    MLPerf 目前已获包括AMD、英特尔、微软、SambaNova、Wave Computing、加州大学伯克利分校、多伦多大学、明尼苏达大学等多家企业和高等院校的联合支持与参与。

    关于MLPerf对人工智能产业的历史价值,业界将其与SPEC(The Standard Performance Evaluation Corporation)标准性能评测机构进行类比。SPEC是国际上对系统应用性能进行标准评测的权威组织,旨在确立、修改以及认定一系列服务器应用性能评估的标准,于1988年由全球几十所知名大学、研究机构、IT企业共同成立,其测试标准被全球用户广泛认可。数据显示,SPEC推出后15年里,CPU性能以每年1.6倍的速度提高,对传统IT业产生了巨大的推动作用。

    《计算机体系结构:量化研究方法》一书作者,新晋图灵奖得主David Patterson就MLPerf的发布评论称:“良好的基准测试能让研究人员迅速比较不同思路,降低创新难度。通过调整研发工作、引导投资决策,MLPerf对于全球范围内机器学习技术进步和整个AI领域的创新意义深远。”

    因为机器学习是一个迅速发展的领域,MLPerf将根据用户反馈迅速迭代。“MLPerf是一个关键的基准,它展示了我们的数据流处理器技术是如何让机器学习工作负载性能达到最优的。”AI初创公司Wave Computing的首席技术官Chris Nicol这样评价。

相关报告
  • 《斯坦福大学推出首个AI指数,将用于追踪和衡量人工智能发展标准》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2017-12-06
    • “AI Index”(AI指数)近日重磅发布,这是斯坦福大学AI百年研究(AI 100)的一个项目,类似于用GDP和标准普尔500指数来衡量美国的经济和股票市场。 AI指数旨在追踪人工智能的活动和进展。目标是促进基于数据的AI的广泛交流和有效对话。这是AI Index的首届年度报告,从多个角度观察和汇报了人工智能中的动态和进展。 该报告列出了2017年人工智能在计算机视觉、自然语言理解等方向上的最新进展,分学术、产业多个角度盘点人工智能进度。报告还综合学术论文数量、招生数量和VC投资数量,得出AI发展活力指数,数据显示,最新一波AI浪潮在2015年活力最高,自那以后其活力开始有小幅减弱。 自1965年人工智能首次被提出以来,曾经的科学幻想已经拥有了非常现实的发展前景,如无人驾驶汽车、可以识别复杂语音指令的智能手机以及可视计算机。为了追踪这一领域的发展,一个由斯坦福大学领导的名为AI 100的人工智能思想家小组发布了一项指数,旨在为人工智能的状态提供一个全面的基准,并衡量技术的进步。 AI 100成立于三年前,它是一份来自Eric Horvitz的慈善礼物。Eric Horvitz是斯坦福大学校友,也曾担任过人工智能促进会前主席。AI 100于2016年秋发布的首份报告,曾试图预测2030年人工智能可能对城市环境带来的影响。 AI指数建立的基线度量指标 AI指数至少追踪权衡了来自学术界,工业界,开源软件及公众利益的18个独立向量,以及在诸如语音识别,问答,计算机视觉(可以识别二维图像中的对象和活动的算法)等领域进展的技术评估。该指数的具体指标包括对学术论文发表的评估、课程注册、与人工智能相关的创业公司、新增就业职位、搜索词频和媒体提及率等。 在许多方面,我们对人工智能的讨论是盲目的,缺乏能用来对活动进行可靠评估的数据,AI指数的目的在于提供一个基于事实的衡量标准,我们可以跟均这个标准来衡量进展情况,并就该领域的未来进行更深入的讨论。 计算机科学名誉教授Shoham表示:“只有当AI指数成为一项团体研究的时候,才能成功。” 虽然研究人员称AI指数是跟踪科学或技术进步的第一个指标,但还有很多其他非财务的指标可以为难以量化的领域提供宝贵意见。比如社会进步指数、中东的和平指数和孟加拉国的赋权指数,这些指数衡量的因素包括营养、卫生、工作量、休闲时间、公众情绪,甚至公共演讲机会等。 AI指数反映出来各种有趣的问题 这个首创指数的发现包括自2000年以来,人工智能创业公司增长了14倍,同期,风险投资增加了6倍。 就学术界而言,在过去的20年里,人工智能的出版物增加了9倍,相关课程的注册率也在不断飙升。比如,斯坦福大学的入门教育机器学习课程的注册人数在过去的30年里,增长了45倍。 再者,从技术指标上来看,图像和语音识别都在逐步接近人类的表现。研究人员指出,人工智能系统在物理探测,理解,回答问题以及皮肤癌细胞摄影图像分类方面都有出色表现。 但是小智君发现,这份报告仍然是非常美国化的,因为主要以美国情况为中心,它还需要更大的国际影响力,以及更多不同的声音。除了现在的风险投资基金外,政府和企业投资拥有更大的机会。 就人类水平的表现而言,AI指数表明,人工智能已经到达了某种程度,尤其是在游戏类的应用程序中,如国际象棋,危险边缘和围棋。尽管如此,研究人员指出,计算机在将特定信息归纳为更深层意义的能力方面,仍然滞后。 在过去的十年里,人工智能已经取得了令人惊叹的进步,但计算机仍然不能展示出一个5岁孩子应有的常识或智力。 AI指数是在AI 100、谷歌、微软以及Toutiao的资金支持下提出的。数据来自美国超过20家互联网大企业以及权威机构。在这份报告中,我们通过多个视角来观察AI的活动和进展。我们汇总了网络上的数据,也贡献了原始数据,并从数据序列的组合中提取新的度量标准。 但是,提供数据只是一个开始。为了真正实现作用,AI指数需要来自更大的社区的支持。最后,这份报告呼吁更多人的参与。每个人都有能力提供数据、分析收集的数据,并列出你希望跟踪的数据。无论你是否有答案或问题,我们都希望这份报告能让你了解AI指数,并成为有关AI的话题的一部分。
  • 《百度发布首个量子领域大模型》

    • 来源专题:数智化图书情报
    • 编译者:闫亚飞
    • 发布时间:2023-09-27
    • 9月23-24日,以“协同创新 量点未来”为主题,2023量子产业大会在安徽合肥召开。量子领域院士专家、智库机构、产业界嘉宾汇聚一堂,探讨量子产业化之路。 作为主旨报告嘉宾,百度量子计算研究所所长段润尧带来百度量子软硬件和解决方案等方面的最新成果,重磅发布首个量子领域大模型,及百度量子助手和量子写作助手两大AI原生应用,加速量子技术与大模型深度融合。他还发布了量子领域大模型白皮书,展望量子领域大模型的未来发展趋势和技术潜力。 当前,量子计算带来后摩尔时代算力革命,广阔市场空间随之打开。有数据显示,2031年69%的全球大型企业计划将采用量子计算。 依托百度量子平台和文心大模型的双重底座优势,百度发布首个量子领域大模型,旨在芯片层、框架层、模型层及应用层等全栈技术上加速量子技术与大模型深度融合,充分激发两大技术各自的潜力。 据段润尧介绍,该量子领域大模型是在文心一言基础上,使用量子领域高质量数据进行更有针对性的训练和优化而构建的量子领域大模型,能更好地理解量子知识,专业执行量子任务。百度量子领域大模型将充分发挥技术协同效应,在数据、算法和算力等各方面取长补短,实现双向赋能,将在训练速度、模型性能、训练成本、交互效率和数据隐私等各个维度全面加持现有大模型的技术能力。 百度量子助手是依托百度量子知识库与产业级知识增强文心大模型,基于7800万原始数据、22万精调数据训练打造。作为百度量子平台的统一入口,百度量子助手打通了百度量子平台量子硬件、量子软件、量子应用的技术全链条,持续降低百度量子平台的使用门槛。 量子写作助手实现了量子领域知识和技术准确且高效的输出,让量子知识触手可及,降低量子计算学习门槛,提高量子计算科研效率。只需输入6个变量,量子写作助手可在5分钟内撰写一篇13000字符合格式要求的专利文档,高效帮助企业将量子领域的研究成果与知识产权沉淀为企业资产。 段润尧进一步分享,量子领域大模型的未来发展将会呈现出多个代表性阶段。从近期以适配量子领域的行业大模型开始,大幅降低量子教育行业门槛;逐渐过渡为经典和量子混合大模型,再发展到通用量子领域大模型,有望实现大模型技术在数据、算法、算力等各维度的全面量子化;最终,量子领域大模型将会成为新时代的操作系统,在量子互联网的基础上互联互通,成为社会发展的基础设施。 现场,段润尧重磅发布量子领域大模型白皮书。报告指出,量子科技与大模型成为技术变革主引擎,量子计算是有效模拟大规模量子系统的利器,量子领域大模型或将成为量子人工智能的最终形式。交互式机制建立起“能力”传递的纽带,而量子纠缠有望将这种机制发挥至极致。 此外,段润尧公布了百度在量子芯片、软硬一体化解决方案等核心领域的最新进展。 百度量子平台近一年进行了持续大规模更新,在金融科技、光量子和量子芯片三大领域均有新功能发布。在金融科技领域,百度量子计算研究所推出量子金融工具集QFinance,提供全面且多功能的量子期权定价工具,整合众多前沿量子算法,包括量子蒙特卡洛、量子傅里叶变换和量子相位估计算法,既确保了计算的高度准确性,也显著缩短了算法运行时间,为资产配置带来了新的高效解决方案。 在光量子领域,百度推出光量子计算模拟器PQS(Photonic Quantum Simulator),为光量子芯片设计和算法研发提供了宝贵的工具和资源。该模拟器支持基于Gaussian态和Fock态的光量子线路模拟,并包含了近20种量子门和测量操作,可模拟多种光量子计算算法,是国内首款可以自由搭建光量子计算线路的模拟工具。 百度量子瞄准超导量子芯片研发“设计、流片、测控” 闭环中的核心技术,旨在研发具有业界核心竞争力的高性能量子芯片。目前,百度量子已完成一款 2D 含耦合器量子芯片的“流片验证”,以及一款 3D flipchip 含耦合器量子芯片的版图设计和仿真验证。近期,“高性能量子芯片的设计、流片与测控全栈技术” 项目荣获「2023 百度十大科技前沿发明」。高性能量子芯片研发将对人工智能、材料科学、药物研发、金融科技等领域带来高潜价值。 去年8月,百度推出全球首个全平台量子软硬一体化解决方案“量羲”,打造出量子计算产业落地的可行路径。量羲平台与百度云计算进行深度融合,并采纳了"四算合一"的战略布局,实现了量子计算、高性能计算、云计算及人工智能计算的有机融合。这使得平台能够根据不同业务需求,灵活调配算力资源。近期“量羲”已完成首个商业化合同的PoC部署。 在量子生态与知识产权方面,百度已申请高质量专利超过280项,已授权120项,覆盖量子算法与应用、量子通信与网络等热门研究方向。今年3月,百度牵头成立国内首个量子计算产业知识产权联盟,并设立国内首个量子计算专利池,在关键量子专利领域进行布局,以推动量子产业高效发展。 “量子产业化和产业量子化已成为未来发展的必然趋势,量子领域大模型有望进一步加速这些目标的实现。百度将持续为用户开放量子资源,为客户提供量子升级培训,与伙伴一起共创量子生态,期待携手用户、客户、伙伴,一同迈向量子计算产业化之路,实现人人皆可量子的时代。”段润尧表示。