《Nature子刊:上海大学魏滨团队等发现脑膜淋巴管是病毒感染大脑并传播的重要通道》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2022-05-12
  • 传统观点认为,因为大脑具有血脑屏障的特殊结构,所以该结构限制了生物大分子、化学小分子以及各种免疫细胞在大脑和血液循环之间的穿梭交流,由此大脑被认为是免疫豁免的器官。但是近期国际前沿研究结果已经证实小鼠和人类大脑的硬脑膜中存在淋巴管,硬脑膜淋巴管(MLV)能够将脑脊液成分和免疫细胞从中枢神经系统(CNS)传入外周颈部淋巴结中,从而建立起 CNS 与外周免疫系统的直接联系。此外,国际上相关研究也发现 MLV 影响多种 CNS 相关疾病,如阿尔茨海默症、帕金森病、多发性硬化症和脑胶质瘤等的进程。但是,还不清楚入侵 CNS 的多种病原是否借助 MLV 系统在大脑和外周器官间传播与扩散。此外,由于病毒感染 CNS 通常在颅内造成急性损伤并伴有弥漫性炎症过程,但是目前学术界还不清楚 MLV 在嗜神经病原感染引起的神经炎症和神经损伤中是否发挥了相关作用。
    上海大学魏滨教授团队与中国科学院分子细胞科学卓越创新中心王红艳研究员团队合作,在 Nature 子刊 Nature Neuroscience 上发表了题为:Meningeal lymphatic vessels mediate neurotropic viral drainage from the central nervous system 的研究论文。
    该项研究综合运用 3D 组织成像、组织透明化、双光子荧光显微镜、量子点标记、光动力学等手段,在国际上首次发现了大脑脑膜淋巴管(MLV)是多种嗜神经病毒颗粒突破大脑-外周屏障向外周淋巴结传播的重要通道,并且发现病毒能够感染组成 MLV 的淋巴管内皮细胞,进而破坏了 MLV 的引流功能。
    该项研究也开创性地揭示了 MLV 在嗜神经病毒感染造成的中枢神经系统(CNS)损伤过程中的重要作用,这些研究成果也对多种急慢性神经损伤的新型靶向治疗提供了新思路。

    为了研究MLV在病毒感染中的变化,研究团队利用了多种嗜神经病毒如狂犬病毒(RABV)、寨卡病毒(ZIKV)、I型单纯疱疹病毒(HSV-1)、日本乙型脑炎病毒(JEV)和滤泡性口炎病毒(VSV)分别感染小鼠大脑,发现病毒感染大脑可以诱发 MLV 的增生。通过小鼠头骨透明化及 3D 成像技术进一步证实了这一发现。
    更重要的是,研究团队利用荧光标记的病毒(VSV-GFP)注射到小鼠的小脑延髓池(联通第四脑室,内有脑脊液)中,发现病毒能够感染 MLV 的淋巴内皮细胞(anti-LYVE-1标记,如下图左),并通过 MLV 从 CNS 传播到外周淋巴结。研究人员将病毒直接注射到小鼠脑部,采集颈部淋巴结,制备组织研磨液,接种到健康乳鼠的脑部,发现引流到颈部淋巴结内的病毒能在乳鼠脑内增殖并导致乳鼠的死亡。这些结果首次揭示了 MLV 是脑内病毒颗粒向外周淋巴结传播的一条重要通道(下图右:大脑病毒经MLV传播到颈部淋巴结模式图)。

    此外,研究团队将荧光标记蛋白 OVA-647 注射到小鼠小脑延髓池,运用活体成像技术检测下排至颈部淋巴结的含量,发现病毒感染小鼠颈部淋巴结 OVA-647 的含量明显少于健康对照,提示了病毒感染 CNS,虽然促进 MLV 扩张,但破坏了 MLV 向外周排出生物大分子的能力。

    为了进一步探索 MLV 在嗜神经病毒感染中的作用,研究团队将小鼠颈部淋巴管结扎或者通过光动力技术破坏 MLV,再进行病毒感染,发现病毒感染引起的小鼠死亡率和脑内病毒载量都明显增加。通过注射重组 VEGF-C 诱导 MLV 重建,则显著降低了病毒感染小鼠的死亡率以及脑内病毒载量。

    综上所述,这些研究开创性揭示了病毒可以利用脑膜淋巴管突破大脑与外周屏障进行传播。促进脑膜淋巴管增生的手段可能为治疗病毒感染中枢神经系统提供新策略。

  • 原文来源:https://news.bioon.com/article/6b73e2663898.html
相关报告
  • 《武汉大学科学家发现抗艾滋病病毒感染的新细胞》

    • 来源专题:艾滋病防治
    • 编译者:李越
    • 发布时间:2012-11-15
    • 武汉大学科学家近日发现,一种名为“表达CD56分子的T淋巴细胞”具有抗艾滋病病毒感染的作用。9月12日,记者从武汉大学基础医学院获悉,该院侯炜教授和武汉大学动物实验中心科研工作人员合作的一项科研成果发表在8月国际美国著名学术刊物《淋巴细胞生物学》杂志上。   侯炜教授介绍,这种名为“表达CD56分子的T淋巴细胞”,是一类“桥梁细胞”,它既具有自然杀伤的功能,又能起到自我保护的功能,它是人类天然免疫系统的一个重要的组成部分,在外周血单核细胞中占5%~15%,而肠道和肝脏中的50%免疫细胞为“表达CD56分子的T淋巴细胞”。但就是这种细胞,以前研究往往只被发现在抗肿瘤和抗肝炎病毒感染中起到作用,而没有发现它在抗艾滋病病毒感染有较强作用。   侯炜和武汉大学动物实验中心霍文哲教授团队的研究,历经3年多时间,首次发现,这种“表达CD56分子的T淋巴细胞”培养液中的分泌物可以抑制艾滋病病毒的感染和复制,并且这种活性具有广谱性,既可抑制实验室保存的艾滋病病毒病毒株,也可抑制临床上分离得到的艾滋病病毒病毒株。在研究“表达CD56分子的T淋巴细胞”培养液中的分泌物抑制艾滋病病毒效应的机制过程中,该研究团队发现,虽然“表达CD56分子的T淋巴细胞”培养液中的分泌物对艾滋病病毒进入细胞的协同受体影响甚微,但其分泌物可增强干扰素调节因子的作用,从而引起巨噬细胞发挥作用,“抗击”艾滋病病毒。此外,“表达CD56分子的T淋巴细胞”具有增强细胞内一种新发现的抗艾滋病病毒的细胞因子的作用
  • 《Nature子刊:我国学者发现泛冠状病毒广谱中和抗体新机制》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-07-11
    • 中国科学院分子细胞科学卓越创新中心、复旦大学上海医学院及上海市公共卫生临床中心合作,孙兵研究员、谢幼华研究员、徐建青研究员、陆路研究员、丁建平研究员与凌志洋副研究员领衔,在 Nature Microbiology 期刊在线发表了题为:Neutralization mechanism of a human antibody with pan-coronavirus reactivity including SARS-CoV-2 的研究论文。 该研究发现了一株泛冠状病毒广谱全人中和抗体——76E1,其不仅能有效地中和 beta 冠状病毒属的 SARS-CoV-2 及其重要突变体毒株,还可以中和不同冠状病毒属的七种人类冠状病毒。 该抗体靶向冠状病毒表面刺突蛋白(Spike, S)上高度保守的 S2’ 酶切位点及融合肽区域。病毒结合受体 ACE2 过程促进该表位的暴露以及 76E1 抗体结合,进而抑制 S2’ 酶切及病毒包膜和宿主胞膜的膜融合,从而抑制病毒进入宿主细胞内,达到中和病毒的目的。 冠状病毒分为 alpha、beta、gamma 和 delta 四个属。21世纪共爆发了三次高致病性人类冠状病毒流行,分别为 SARS-CoV、MERS-CoV 和 SARS-CoV-2,均归类于 beta 属。   除此之外,几种普通型冠状病毒也时常在人群中流行,导致无症状或轻型上呼吸道感染疾病,如 alpha 属的HCoV-229E 和 HCoV-NL63,beta 属的 HCoV-OC43 和 HCoV-HKU1。   2019年底爆发的 SARS-CoV-2 大流行对全球经济社会和人类健康造成重大威胁,SARS-CoV-2 突变株的不断出现及广泛传播也引起世界范围内的多轮流行。我国乃至全球已经接种的疫苗均基于 SARS-CoV-2 原始株开发,而突变体毒株已经逐渐对 SARS-CoV-2 原始株疫苗建立的免疫屏障产生了一定程度的逃逸作用,尤其是 Omicron 突变体所产生的免疫逃逸现象非常明显。因此,如何有效的应对 SARS-CoV-2 突变是目前应对疫情最紧迫的任务。另外,人类依然要面对未来爆发新的冠状病毒大流行的可能性。因此,开发有效的广谱抗冠状病毒的疫苗和药物有重大的社会需求。   大量的临床实践已证明,单克隆抗体临床干预在预防和治疗病毒感染方面非常有效。虽然国内及国际上已有新冠单克隆抗体药物上市,然而大部分已经对 Omicron 等变异株失效或疗效显著降低。   针对不断出现的病毒突变株,一个亟待回答的科学问题是:是否能开发广谱中和SARS-CoV-2及其突变体的抗体?这种抗体亦能对不同冠状病毒属的人类冠状病毒有广谱中和作用?其广谱作用的机制是什么?   为了解决上述科学问题,研究者们首先用 SARS-CoV-2 S 胞外区蛋白作为诱饵,从新冠病毒感染的康复患者外周血 PBMC 中,分离了 S 蛋白特异性的记忆 B 细胞,通过基因工程技术获得单个记忆 B 细胞来源的抗体重、轻链基因,并表达制备成全人源抗体。通过 ELISA 结合实验和病毒中和实验,筛选到一株广谱中和抗体——76E1,其可以广谱结合并中和 SARS-CoV-2 及其突变体毒株,包括 Alpha、Beta、Kappa、Gamma、Delta 和 Omicron。   在 hACE2 转基因小鼠上的真病毒攻击实验表明,用 76E1 单抗预防和治疗 SARS-CoV-2 感染时,可显著减少体重下降和降低肺部病毒滴度。进一步,研究人员发现 76E1 单抗可以广谱结合并中和不同冠状病毒属的七种人类冠状病毒,包括 SARS-CoV、MERS-CoV、SARS-CoV-2、HCoV-229E、HCoV-OC43、HCoV-NL63 及 HCoV-HKU1。在乳鼠上进行的 76E1 预防和治疗 HCoV-OC43 真病毒感染实验表明,76E1 可以可显著减少体重下降和降低脑部病毒滴度。以上实验提示该抗体有潜在的临床应用价值。 为了进一步研究 76E1 单抗广谱中和冠状病毒的分子机制,研究人员解析了 76E1 Fab/抗原多肽的晶体结构,发现 76E1 单抗主要靶向 S 蛋白的 S2' 酶切位点和融合肽区域。丙氨酸突变实验进一步确认 R815、E819、D820、L822、F823、K825 是 76E1 的关键识别表位。序列比对发现,以上表位在四种冠状病毒属中高度保守,这是 76E1 广谱中和能力的分子基础。比较有意思的是,76E1 的关键识别表位在融合前三聚体 S 蛋白全部或部分隐藏。并且,76E1 Fab/ 抗原多肽晶体结构中的抗原多肽与融合前三聚体 S 蛋白中的相应多肽也展现出不一样的构象。同时,亲和力实验表明 76E1 难以识别融合前三聚体 S 蛋白,而 RBD 抗体却能很好的结合融合前三聚体 S 蛋白。以上提示 76E1 可能识别了三聚体 S 蛋白从融合前到融合后变构过程中的中间态构象。 随后,研究者发现 S 蛋白结合受体 ACE2 过程促进了 S2' 酶切位点和融合肽的暴露,进而 76E1 结合该表位,从而抑制 S2' 酶切,阻断病毒包膜与宿主胞膜的膜融合过程,最终抑制病毒进入宿主细胞,中和病毒。冠状病毒利用这一策略来掩盖它们的融合过程中的敏感位点,从而限制抗体接触到这种敏感位点,并且仅在识别和感染宿主细胞时才将它暴露出来。   进一步的研究表明,76E1 在病毒感染后期具有很大的优势性,即在病毒结合宿主细胞受体后,阻断受体结合过程的 RBD 抗体失去中和活性,而 76E1依然可以中和病毒。利用以上原理,研究者发现 ACE2 蛋白与 76E1 单抗具有协同中和 SARS-CoV-2 的效果。同时,发现一些具有模仿 ACE2 功能的 RBD 抗体,如 CB6 等,与 76E1 也具有协同中和 SARS-CoV-2 的效果。这为基于抗体的抗病毒疗法提供新的升级版策略。 综上所述,该研究发现的单抗具有更宽的广谱中和活性,同时具有全新的中和机制。为应对 SARS-CoV-2 突变及未来新发冠状病毒爆发提供新的抗病毒策略,同时为新一代广谱冠状病毒疫苗的设计提供重要参考和理论依据。