《波士顿大学等机构研究团队首次成功在单一芯片上实现了电子-光子-量子系统》

  • 编译者: 李晓萌
  • 发布时间:2025-08-18
  • 近日,波士顿大学、加州大学伯克利分校与西北大学组成的研究团队首次实现了世界首个电子–光子–量子系统级芯片,为可扩展量子技术树立了里程碑。该芯片利用标准45纳米半导体工艺,将量子光源与稳控电子线路集成在一起,能够持续、可靠地产生关联光子对(成对的光粒子)——这是未来量子技术不可或缺的关键资源。这一突破为实现可大规模量产的“量子光源工厂”芯片奠定了基础,也为由大量此类芯片协同构建的大型量子系统铺平了道路。

    “量子计算、通信和传感从概念走向现实,是一条长达数十年的道路。”团队成员、波士顿大学电气与计算机工程副教授Milo? Popovi?表示,“我们的工作只是这条路上的小小一步,却至关重要——它证明我们能够在商业半导体代工厂中构建可重复、可控的量子系统。”

    “要把量子系统从实验室推向可扩展平台,正需要这种跨学科的协作。”西北大学电气与计算机工程教授、量子光学先驱Prem Kumar表示,“如果没有电子学、光子学和量子测量三大领域的通力合作,我们不可能完成这项工作。”

    正如传统芯片靠电流驱动、光通信链路靠激光供能,未来的量子技术也需要源源不断的“量子光”资源单元才能运行。为此,研究人员在硅芯片上构建了一个由众多“量子光源工厂”组成的阵列,每个工厂的尺寸不到1毫米×1毫米。

    要在芯片上产生光的量子态,必须对光子器件进行精密设计——具体来说,就是微环谐振器。为了以“成对关联光子”的形式持续输出量子光,这些谐振器必须与输入激光保持同步调谐:激光既为芯片上每一个“量子光源工厂”供能,也是产生光子的“燃料”。然而,这类器件对温度和制造公差极度敏感,稍有偏差就会失步,从而打断量子光的稳定产生。

    为解决这一难题,团队构建了一套片上集成系统,能够主动稳定量子光源——也就是产生关联光子流的硅基微环谐振器。每片芯片并行集成12个这样的光源,每个谐振器都必须与输入激光保持同步,即便在温度漂移以及来自邻近器件(包括同芯片上其余11个光子对源)的干扰下,也能持续稳定地输出量子光。

    “最让我兴奋的是,我们把控制回路直接嵌入芯片——实时稳定一个量子过程。”主导量子测量的西北大学博士生Anirudh Ramesh表示,“这朝着可扩展量子系统迈出了关键一步。”

    作为量子光源的核心单元,微环谐振器的高灵敏度是一把双刃剑:正是凭借这种灵敏度,它们才能在极小的芯片面积内高效产生量子光流;然而,哪怕是微小的温度漂移,也会破坏光子对的产生过程。波士顿大学牵头的团队通过在谐振器内部集成光电二极管解决了这一难题:这些光电二极管实时监测与输入激光的对准状态,同时不干扰量子光的产生。芯片上的微型加热器与控制逻辑会根据监测结果持续调整谐振频率,随时补偿漂移。

    “相比我们之前的工作,这次最大的挑战是把光子设计推向满足量子光学严苛要求的同时,仍严格遵循商用CMOS平台的限制。”负责光子器件设计的波士顿大学博士生Imbert Wang表示,“这使我们能够把电子学和量子光学作为一个整体系统进行协同设计。”

    由于芯片内置反馈回路,可实时稳定每一个量子光源,即使温度波动或工艺偏差也能保持可预测输出——这是量子系统规模化不可或缺的前提。该芯片采用了成熟的45纳米商用CMOS工艺平台,最初由波士顿大学、加州大学伯克利分校、格芯(GlobalFoundries)以及硅谷初创公司Ayar Labs紧密合作开发;Ayar Labs源自这两所高校的研究成果,如今已成为光学互连芯粒领域的行业领先者。通过与西北大学的新合作,这一同样的制造流程如今不仅能用于AI和超级计算所需的高速光学互连,也如本研究所示,可在大规模硅平台上实现复杂的量子光子系统。

    “我们的目标是证明,复杂的量子光子系统完全可以在一块CMOS芯片内构建并保持稳定。”负责芯片设计、封装与整合的加州大学伯克利分校博士生Daniel Kramnik表示,“这需要那些通常互不往来的领域进行紧密协作。”

    随着量子光子系统在规模和复杂度上不断演进,这类芯片有望成为从安全通信网络、先进传感,到最终量子计算基础设施等多种技术的核心构件。

    几位参与本研究的研究生作者已继续在产业界推进硅基光子与量子技术:Josep Maria Fargas Cabanillas与Anirudh Ramesh加入了光子量子计算初创公司PsiQuantum;?or?e Gluhovi?与Sidney Buchbinder加入Ayar Labs;Imbert Wang就职于Aurora;Daniel Kramnik加入Google X,并正在筹备一家硅基光子创业公司。这些职业轨迹体现了硅基光子在两方面的强劲势头:一方面用于扩展当今的AI计算基础设施,另一方面为可扩展、芯片级量子系统的长远目标铺路。

    本研究得到美国国家科学基金会(NSF)资助,包括其“半导体未来”(FuSe)专项计划,以及帕卡德科学与工程奖学金和Catalyst基金支持。芯片流片由Ayar Labs与格芯(GlobalFoundries)提供。

    相关研究成果发表在《Nature Electronics》期刊(DOI:10.1038/s41928-025-01410-5)。

相关报告
  • 《香港理工大学等机构研究团队开发量子微处理器芯片,用于模拟大型且结构复杂的分子光谱》

    • 编译者:张宇
    • 发布时间:2024-09-11
    • 近日,香港理工大学的工程研究人员开发了一种新的量子微处理器芯片,用于模拟大型和复杂的分子结构。这种16量子比特的量子微处理器芯片能够对分子振动光谱进行高精度模拟,它克服了经典计算机的局限性并推动了量子化学应用的发展。这种尖端的量子微处理器可能会彻底改变材料科学和化学等领域,在模拟蛋白质结构和优化分子反应方面具有潜在应用。 香港理工大学的工程研究人员已成功开发出一种量子微处理器芯片,用于模拟现实中的大结构和复杂分子的分子光谱,这是世界上首次取得这样的成就。准确捕捉这些量子效应需要开发精确的计算模型,模型中这些涉及量子叠加和纠缠的部分都是计算密集型的经典模型。 该研究发表在《Nature Communications》期刊,题为“Large-scale photonic network with squeezed vacuum states for molecular vibronic spectroscopy(用于分子振动光谱的具有挤压真空状态的大规模光子网络)”的论文中。这项尖端技术使用了超出经典计算机能力的量子计算应用程序为解决复杂的量子化学问题铺平了道路。 研究团队由LIU Ai-Qun教授领导,他是量子工程与科学领域的主席教授,也是量子技术研究所(IQT)的所长,全球STEM学者,新加坡工程院院士。与他一起的主要项目推动者是ZHU Hui Hui博士,电子与电气工程系的博士后研究员,也是研究论文的第一作者。其他合作者来自南洋理工大学、香港城市大学、北京理工大学、南方科技大学、微电子研究所以及瑞典的查尔默斯理工大学。 Zhu博士的团队通过实验演示了一种大规模量子微处理器芯片,并引入了一种非常规的理论模型,该模型采用线性光子网络和压缩真空量子光源来模拟分子振动光谱。16量子比特量子微处理器芯片被制造并集成到单个芯片中。项目已经开发了一个完整的系统,包括用于量子光子微处理器芯片和电气控制模块的光-电-热封装的硬件集成、设备驱动程序的软件开发、用户界面和完全可编程的底层量子算法。量子计算机系统的发展为进一步的应用提供了基本的组成部分。 量子微处理器可用于解决复杂任务,例如模拟大型蛋白质结构或优化分子反应,并显著提高速度和准确性。Zhu博士说:“我们的方法可以产生一类早期的实用分子模型,这些模拟的运行方式超越了经典计算模型的限制,并有望在相关量子化学应用中实现量子加速。 量子技术在科学领域至关重要,包括材料科学、化学和凝聚态物理学。量子微处理器芯片作为一种极具吸引力的硬件平台,为量子信息处理提供了一种很有前途的技术解决方案。 研究结果和由此产生的集成量子微处理器芯片为众多实际应用开辟了重要的新途径。这些应用包括解决分子对接问题和利用量子机器学习技术。刘教授说:我们的研究受到量子模拟技术对现实世界的潜在影响的启发。在我们工作的下一阶段,我们的目标是扩大微处理器的规模,并处理更复杂的应用,从而进一步促进使社会生产和行业进步。 这个团队推动了量子技术的突破性发展,可以被认为是“游戏规则的改变者”他们利用量子计算微处理器成功地完成了分子光谱模拟这一极具挑战性的任务。他们的研究标志着量子技术及其潜在的量子计算应用的重大进步。
  • 《北京大学与山西大学研究团队合作,在连续变量光量子芯片领域取得重大突破》

    • 编译者:李晓萌
    • 发布时间:2025-04-29
    • 2025年2月20日,北京大学物理学院现代光学研究所王剑威教授和龚旗煌教授课题组与山西大学苏晓龙教授课题组合作,在国际顶级学术期刊《自然》(Nature)上发表一项以“基于集成光量子频率梳芯片的连续变量多体量子纠缠”(Continuous-variable multipartite entanglement in an integrated microcomb)为题的突破性研究成果。该团队在国际上首次实现了基于集成光量子芯片的连续变量簇态量子纠缠,为光量子芯片的大规模扩展及其在量子计算、量子网络和量子信息等领域的应用奠定了重要基础。研究团队通过创新性地发展超低损耗的连续变量光量子芯片调控技术和多色相干泵浦与探测技术,成功在氮化硅集成频率梳微环腔的真空压缩频率超模上确定性地制备出多比特纠缠簇态,并实现不同簇态纠缠结构的可重构调控。同时,团队利用van Loock-Furusawa判据实验违背和完备的nullifier(零化子)关联矩阵测量,对连续变量簇态的纠缠结构进行了严格实验判定。这一研究成果不仅解决了以往集成光量子芯片面临的扩展性难题,还为未来实现更大尺度的量子纠缠与量子调控提供了新的技术路径。该成果标志着集成光量子芯片技术在量子信息处理领域的重要突破,为量子计算和量子网络的实用化发展提供了关键技术支撑。 量子信息的基本单元是量子比特(qubit)或量子模式(qumode),二者可统称为量子比特。它们可分别通过离散变量和连续变量编码在光量子体系中实现,各具优缺点。例如,基于单光子的离散变量体系能够实现超高保真度的量子比特操作,但其面临的主要挑战是制备量子比特和量子纠缠存在概率性。根据现有技术手段,离散变量量子纠缠的制备成功率随比特数增加呈指数下降,这限制了其可扩展性。相比之下,基于光场正交分量编码的连续变量体系能够确定性产生量子比特和量子纠缠,尽管其操控保真度略低,却为大尺度光量子纠缠态的制备提供了一条极具前景的技术路径。 集成光量子芯片是一种能够在微纳尺度上编码、处理、传输和存储光量子信息的先进平台。自2008年国际上实现首个离散变量集成光量子芯片以来,集成光子芯片材料和技术取得了显著进展,并在离散变量光量子信息领域发挥了重要作用。然而,连续变量集成光量子芯片的发展面临诸多挑战:一方面,集成光学参量放大过程要求芯片具备高光学非线性和低光学损耗等高性能;另一方面,对片上多模压缩光场与纠缠的机理理解不足,多模纠缠调控与验证也存在技术瓶颈。这些因素导致连续变量光量子芯片的研究长期处于起步阶段,其编码与纠缠的比特数仅限于单模或双模压缩态,而多模(多比特)量子纠缠态的片上制备与验证仍极具挑战性。 纠缠簇态作为一种典型的多比特量子纠缠态,在量子信息科学中具有极其重要的地位。簇态不仅是单向量子计算的核心资源,还在量子纠错和容错量子计算中发挥关键作用,同时为量子网络的构建提供了重要支持,并可用于模拟复杂的多体量子系统。尽管簇态纠缠的重要性已被广泛认可,但其大规模制备技术仍面临诸多挑战。此前,光量子芯片上的簇态纠缠研究主要集中在离散变量体系,确定性地制备大规模纠缠簇态面临巨大实验困难,而连续变量簇态的片上制备和验证技术在国际上仍属空白。 在本研究中,研究团队首次在国际上实现了基于集成光量子芯片的连续变量纠缠簇态的确定性制备、可重构调控与严格实验验证。这一突破性成果不仅填补了连续变量光量子芯片领域的关键技术空白,还为大规模量子纠缠态的制备与操控提供了全新的技术路径,对推动量子计算、量子网络和量子模拟等领域的实用化发展具有非常重要的意义。 值得一提的是,当前纠缠模式数目的限制主要来自集成微腔的尺度(即频率间隔)和多色泵浦光的数目。团队已成功解决了基础的科学问题,为未来实现更大规模簇态纠缠及其在量子信息处理中的应用奠定了重要的物理基础。面向大规模扩展主要依赖于工程技术的优化,例如,通过先进芯片加工技术制备更大尺度的微腔,以及利用相位锁定的光学频率梳进行激发等工程手段,可以显著提升纠缠态的规模和复杂度。 论文原文链接:https://www.nature.com/articles/s41586-025-08602-1