《昆明动物所等在基因组稳定性驱动的低氧适应研究中取得进展》

  • 来源专题:转基因生物新品种培育
  • 编译者: 姜丽华
  • 发布时间:2022-10-31
  •       近期,中国科学院昆明动物研究所研究员赵博团队等在Journal of Experimental & Clinical Cancer Research上发表了题为RETSAT

    associates with DDX39B to promote fork restarting and resistance to

    gemcitabine based chemotherapy in pancreatic ductal adenocarcinoma的研究论文,报道了RETSAT基因在基因组稳定性维持和低氧耐受中的功能和机制。

      基因组稳定性的维持以氧作为必要条件,特别是在极端低氧(氧浓度低于1%)条件下,HIF信号通路显著下调DNA损伤反应(DNA

    Damage

    Response,DDR)核心组分的表达,引起DNA复制和修复效率降低,造成DNA损伤累积和基因组不稳定,细胞被动地进入凋亡或衰老。然而,一些特例值得关注。例如,高原动物细胞能够较强地维持基因组稳定并耐受低氧,提示可能存在某种未知通路或机制,赋予细胞主动增强基因组稳定性的能力来适应低氧。另外,这些机制能否为极端低氧的实体瘤(如胰腺癌)防治提供新视角和新思路,值得探索。

      RETSAT 是一个在青藏高原哺乳动物类群中趋同演化和显著正选择的基因,但其编码蛋白在基因组稳定性调控中是否发挥功能,尚不清楚。在基础方面,该研究利用iPOND

    (isolate proteins on nascent DNA)、DNA fiber assay、Comet

    assay等基因组稳定性研究技术,确定了RETSAT是一个新的复制叉结合蛋白。在低氧条件下,RETSAT招募RNA解旋酶DDX39B入核,有效清除R-Loop,避免转录-复制冲突(Transcription–replication

    collisions),保障DNA复制有序进行,促进细胞的低氧适应。在应用方面,利用TCGA数据库、临床病理样本、3D培养模型、胰腺癌类器官模型和小鼠移植瘤模型等,研究人员确定了RETSAT高表达与胰腺癌预后和吉西他滨化疗获益均呈现负相关,发现了DDX39B抑制剂CCT018159在联合药物治疗胰腺癌中的价值。

  • 原文来源:http://www.cas.ac.cn/syky/202209/t20220923_4848687.shtml
相关报告
  • 《昆明动物所阐明多能干细胞基因组稳态维持新机理》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-02-08
    • 多能干细胞(Pluripotent stem cells,PSCs)因在体外具无限增殖和分化为不同类型细胞的潜能,在再生医学领域中颇具应用前景,也成为目前临床上最具潜能的成药细胞。PSCs制备过程中的标准化、规模化及细胞质量稳定性是走向临床应用的先决条件,但人PSCs在体外扩增培养过程中,易出现遗传和表观遗传的变异,严重阻碍了PSCs的临床应用。因此,研究PSCs遗传物质稳定性维持机理,是寻找改善策略、突破应用瓶颈的关键。   PSCs基因组的突变率远低于分化细胞。中国科学院昆明动物研究所研究员郑萍团队与合作者的前期研究表明,PSCs利用不同于体细胞的特殊机制,有效调控基因组稳定。郑萍团队前期已鉴定了PSCs在DNA复制、DNA损伤修复中的一些特殊分子及作用机制。近期,科研团队鉴定了在小鼠胚胎干细胞(mouse Embryonic Stem cells,mESCs)中特异表达的全新长链非编码RNA-LncRNA NONMMUT028956(简写为Lnc956)。对该LncRNA的系统研究发现,它不仅参与复制压力下mESCs复制小体稳定的维持,而且还监控mESCs基因组的质量,从而确保mESCs基因组稳态。   长非编码RNA在多种生物学功能中起重要作用。由于技术手段的限制,目前尚未有发现复制叉上具功能性长非编码RNA的报道。科研团队利用前期研发的分离新生DNA链上(即复制叉)RNA技术(isolate RNAs on nascent DNA,iROND),首次鉴定了ESCs复制叉上特异的新的功能性LncRNA-Lnc956。对该LncRNA的研究发现,当复制压力发生时,Lnc956能有效聚集到复制叉上,并大量招募Trim28和Hsp90b1聚集于复制叉形成复合体。Trim28直接与DNA复制解旋酶复合体MCM2-7相互作用,拉近了Lnc956-Trim28-Hsp90b1复合体与MCM2-7复合体之间的物理距离,使分子伴侣Hsp90b1通过GTP水解活性作用于MCM7,阻碍MCM7进行K48和K63泛素化(MCM7泛素化会导致复制小体解离),从而使复制小体能在一定程度复制压力情况下得以稳定,保持了基因组的完整性。科研团队也发现Lnc956缺失会导致小鼠胚胎部分致死。致死原因主要是胚胎细胞大量扩增过程中,细胞出现明显基因组不稳定现象,并导致胞质DNA水平显著增加,引起较严重的炎症反应。总之,该研究成果迄今首次发现了小鼠多能干细胞复制叉上特异性功能性长非编码RNA-Lnc956,并揭示了Lnc956维持多能干细胞基因组稳定和促进胚胎发育的分子机制。   有效清除基因组损伤的细胞个体,是干细胞维持群体基因组稳定的重要方式。p53是目前已知唯一的干细胞基因组质量监控分子。p53通过在转录水平上抑制多能性调控网络关键基因的表达,激活分化调控网络基因的转录,使PSCs快速启动分化和凋亡,确保PSCs的基因组质量。除了p53通路,是否还存在其他独立的机制调控损伤干细胞的清除,值得进一步研究。   科研团队针对新鉴定的LncRNA-Lnc956在干细胞质量控制中发挥的作用做了深入探索。利用多种DNA损伤药物处理、分化、凋亡、单克隆形成、克隆竞争性和转录组学等方法对该LncRNA功能研究后,科学家发现缺失Lnc956的ESCs在受到DNA损伤后不易启动分化和凋亡,提示Lnc956参与DNA损伤后ESCs的分化和凋亡。但是,Lnc956缺失的ESC中,p53通路的激活和功能未受影响,提示p53没有介导Lnc956的调控作用。为探究Lnc956分子水平上具体作用机理,科研人员利用In vitro/in vivo RNA pull down、蛋白质质谱及RNA免疫共沉淀等技术鉴定出与Lnc956相互作用的靶蛋白-KLF4。科研团队通过机制分析发现,在未受DNA损伤时,Lnc956与KLF4无相互作用。而在基因组受损后,DNA损伤反应通路的核心激酶ATM激活,ATM活化Mettl3 (调控RNA m6A修饰),使Lnc956发生m6A修饰。发生m6A修饰的Lnc956大量结合干性维持关键蛋白KLF4。Lnc956-KLF4结合体滞留KLF4蛋白,阻止KLF4蛋白对ESCs多能性的调控,阻止KLF4蛋白结合到DNA上行使干性调控功能,使基因组损伤的干细胞快速发生分化,得以清除。Lnc956-KLF4通路不依赖p53,和p53通路平行,共同对干细胞基因组质量进行监控。因此,当ESCs受到DNA损伤应激时,磷酸化的ATM信号通路可分别激活p53和Lnc956-KLF4两条通路,使未受DNA损伤修复的ESCs快速发生分化和凋亡,高效清除受损ESCs,防止受损ESCs传递到子代,确保了ESCs遗传物质的稳定性和安全性。   相关研究成果分别以Lnc956-TRIM28-HSP90B1 complex on replication forks promotes CMG helicase retention to ensure stem cell genomic stability and embryogenesis和Lnc956 regulates mouse embryonic stem cell differentiation in response to DNA damage in a p53-independent pathway为题,发表在《科学进展》(Science Advances)上。研究工作得到国家自然科学基金等的支持。
  • 《昆明植物所揭示亚基因组在竹子进化中的作用》

    • 来源专题:生物育种
    • 编译者:季雪婧
    • 发布时间:2024-04-26
    •     多倍化(基因组加倍)作为进化的主要驱动力,在开花植物进化树的不同阶段普遍存在。然而,人们对多倍化细胞核中亲本基因组之间的相互作用还知之甚少,这通常涉及到亚基因组的优势。竹子在物种和形态上表现出很大的多样性,包括一个以二倍体为主的草本分支(约126种)和三个主要的多倍体木本分支(约1576种)。木本竹类是适应森林栖息地的重要植物品系之一,具有快速生长和同步开花等生物学特性。     中国科学院昆明植物研究所李德铢研究员领导的团队近日与美国科学家合作,提出了木本竹类起源和多倍化的精细模型。这篇题为“Genome assemblies of 11 bamboo species highlight diversification induced by dynamic subgenome dominance”的论文于3月15日发表在《Nature Genetics》杂志上。研究人员发现,在竹子进化的早期,木本品系的二倍体祖先之间反复发生杂交事件,随后出现多倍化,同时在木本品系和草本品系之间发生基因渐渗现象。李德铢团队长期以来一直致力于竹子的系统和进化研究。在之前报告四种竹子的基因组草图的工作中,他们提出了木本竹类的杂交和多倍化网状演化路线。为了覆盖不同的倍性水平和系统发育多样性,研究团队选择了11个代表性物种进行基因组测序:两种草本竹子和九种木本竹子,涵盖三个分支:温带木本分支、新热带木本分支和旧热带木本分支。在中国西南野生物种种质资源库的支持下,他们采用三代测序技术成功获得了11个竹子物种的染色体级别的基因组序列。他们收集并测序了476份竹子样本的转录组数据,这些样本覆盖不同的组织和不同的生长阶段。利用多组学方法,研究小组证实了木本竹类存在四套不同的亚基因组:A、B、C和D。     进一步的研究表明,尽管三次多倍化事件集中在2100万年前至1200万年前,但木本竹类却表现出显著的核型稳定性,在亚基因组层面维持了禾本科祖先状态的12条染色体。研究表明,C亚基因组在两个四倍体分支中具有明显的优势,这反映在一系列的特征上,包括基因组大小、基因分离、基因组重排、转座元件和基因表达。然而,在六倍体分支中,亚基因组优势则表现得更为动态,呈现从C亚基因组到A亚基因组过渡的趋势。进一步分析表明,优势的C亚基因组以及六倍体分支中的A亚基因组对木本竹类独特性状的进化贡献最大,或催生了它们的适应性演化,使其在森林栖息地中成功繁衍。这项工作强调了使用各个分支的基因组序列组装的实用性,可促进我们对多倍体植物亚基因组进化的理解。