《美国科罗拉多大学科学家利用细菌生产建筑材料》

  • 来源专题:中国科学院文献情报生命健康领域集成服务门户
  • 编译者: 赵若春
  • 发布时间:2020-04-02
  • 3月24日,美国科罗拉多大学博尔德分校一支由生物化学、微生物学和材料学领域科学家组成的研究团队,利用细菌来生产矿物质和聚合物,以打造环保的建筑材料。研究团队对大肠杆菌进行编程,成功生产出不同尺寸、形状和刚度的石灰岩颗粒,以及用于制造聚苯乙烯泡沫的苯乙烯单体。石灰岩颗粒与聚苯乙烯复合后,可用于开发环保、低碳的生物建筑材料。研究人员表示,基于合成生物学和基因编辑等技术,细菌可用于生产自愈材料、环境感知材料和发光材料等,应用前景十分广泛。相关研究成果发表于《科学报告》期刊。

  • 原文来源:;https://www.colorado.edu/today/2020/01/15/building-materials-come-alive
相关报告
  • 《我国科学家利用氮化碳材料实现高效杀菌净水》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-03-06
    • 近期,扬州大学、悉尼科技大学和中国科学院过程工程研究所的科学家联合开发了一种新型的非金属催化剂,在室外正午太阳光照射下,即可在30分钟内完成对富菌污染水的净化,杀菌效率达到99.9999%,符合我国饮用水标准对细菌数量的要求。这篇工作目前已经发表在国际知名期刊《化学》上。    清洁水资源短缺是全世界面临的棘手问题,科学家通过多种途径试图寻求一种高效、节能的光催化材料,以实现有效杀菌净水。以碳材料为代表的非金属光催化剂,具有成本低,酸碱耐受力高等众多优势,尤其是可以有效避免金属向水中溶出引发的二次污染,是一类非常有潜力的新型催化剂。但是目前的非金属光催化剂效率仍然不高,无法与金属基的催化剂相抗衡。    “我们课题组一直致力于二维碳材料表面电荷位点选择性的调控。利用这样的思路,我们设想通过对C3N4纳米片边缘的修饰,以促进电子和空穴的分离。”中国科学院过程工程研究所的王丹研究员提及,“同时,边缘的修饰也可以提升氧分子在纳米材料上的吸附,进而提升具有杀菌活性的含氧物种的产生。”    扬州大学的王赪胤教授接着提到:“与目前已知的光催化活性最高的催化剂相比,我们的材料仅需要十分之一的用量即可达到同样的效果。并且它的催化活性可与目前催化活性最高的金属催化剂相媲美。”    同时,该催化剂可以负载在基底上用于杀菌,进而抑制了催化剂向水中的扩散,避免了后续将催化剂与饮用水的分离处理,简化了净水流程,节约了净水成本。此外,科学家们通过将该纳米材料涂敷在玻璃或者塑料表面,制备了连续化的高效净水装置。含细菌的污水从入口流入设备,即可快速的实现杀菌净化,从出口获得饮用水。    “这样的工作不仅提供了一个简单、高效、节能的净水催化剂,从科学问题上也提供了一种碳材料表面电子密度的简单调控方式。”王丹研究员强调到。    最后,悉尼科技大学的汪国秀教授展望到:“这种对二维氮化碳材料表面选择性修饰的思路,将有望在催化、电子、靶向治疗等诸多领域带来更加广阔的应用。”
  • 《中国科学家研制新材料 有望助力“双碳”和太空探测》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2022-05-20
    • 白天可比环境温度高170摄氏度,夜晚可比环境温度低20摄氏度,无需外部能源消耗……近期,中国科学技术大学教授裴刚、研究员邹崇文等人研制出一种分别以太阳、太空为热源、冷源的“冷热双吸”材料,可24小时捕获利用能量,有望在改善地球温室效应、供应太空基地能源等方面发挥作用。 人类利用阳光已开发出不少应用,比如光伏发电、太阳能热水器等。而利用太空辐射制冷,近年来成为国际新兴科研热点。 裴刚、邹崇文团队研制出一种基于二氧化钒的涂层材料,其表现出“智能自适应性”:白天在太阳辐照下为金属态,吸收热能;夜晚则处于绝缘态,将热量辐射到外太空,从而吸收冷能。 实测发现,该材料表面温度白天可比环境温度高170摄氏度,夜晚可比环境温度低20摄氏度,24小时全天候运行,为高效捕获利用太阳热能和太空冷能开辟新途径。 日前,国际期刊《美国科学院院刊》发表了这项成果。 “我们主要的技术突破,是解决了光热转换和辐射制冷存在的红外光谱冲突,并分别强化其性能,在同一个材料上实现‘冷热同体’,优化空间和成本。”裴刚说。 据悉,“冷热双吸”材料的技术特点使其应用前景广阔,对实现“双碳”目标、缓解地球温室效应等具有积极意义。