《美国科罗拉多大学科学家利用细菌生产建筑材料》

  • 来源专题:中国科学院文献情报生命健康领域集成服务门户
  • 编译者: 赵若春
  • 发布时间:2020-04-02
  • 3月24日,美国科罗拉多大学博尔德分校一支由生物化学、微生物学和材料学领域科学家组成的研究团队,利用细菌来生产矿物质和聚合物,以打造环保的建筑材料。研究团队对大肠杆菌进行编程,成功生产出不同尺寸、形状和刚度的石灰岩颗粒,以及用于制造聚苯乙烯泡沫的苯乙烯单体。石灰岩颗粒与聚苯乙烯复合后,可用于开发环保、低碳的生物建筑材料。研究人员表示,基于合成生物学和基因编辑等技术,细菌可用于生产自愈材料、环境感知材料和发光材料等,应用前景十分广泛。相关研究成果发表于《科学报告》期刊。

  • 原文来源:;https://www.colorado.edu/today/2020/01/15/building-materials-come-alive
相关报告
  • 《我国科学家利用氮化碳材料实现高效杀菌净水》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-03-06
    • 近期,扬州大学、悉尼科技大学和中国科学院过程工程研究所的科学家联合开发了一种新型的非金属催化剂,在室外正午太阳光照射下,即可在30分钟内完成对富菌污染水的净化,杀菌效率达到99.9999%,符合我国饮用水标准对细菌数量的要求。这篇工作目前已经发表在国际知名期刊《化学》上。    清洁水资源短缺是全世界面临的棘手问题,科学家通过多种途径试图寻求一种高效、节能的光催化材料,以实现有效杀菌净水。以碳材料为代表的非金属光催化剂,具有成本低,酸碱耐受力高等众多优势,尤其是可以有效避免金属向水中溶出引发的二次污染,是一类非常有潜力的新型催化剂。但是目前的非金属光催化剂效率仍然不高,无法与金属基的催化剂相抗衡。    “我们课题组一直致力于二维碳材料表面电荷位点选择性的调控。利用这样的思路,我们设想通过对C3N4纳米片边缘的修饰,以促进电子和空穴的分离。”中国科学院过程工程研究所的王丹研究员提及,“同时,边缘的修饰也可以提升氧分子在纳米材料上的吸附,进而提升具有杀菌活性的含氧物种的产生。”    扬州大学的王赪胤教授接着提到:“与目前已知的光催化活性最高的催化剂相比,我们的材料仅需要十分之一的用量即可达到同样的效果。并且它的催化活性可与目前催化活性最高的金属催化剂相媲美。”    同时,该催化剂可以负载在基底上用于杀菌,进而抑制了催化剂向水中的扩散,避免了后续将催化剂与饮用水的分离处理,简化了净水流程,节约了净水成本。此外,科学家们通过将该纳米材料涂敷在玻璃或者塑料表面,制备了连续化的高效净水装置。含细菌的污水从入口流入设备,即可快速的实现杀菌净化,从出口获得饮用水。    “这样的工作不仅提供了一个简单、高效、节能的净水催化剂,从科学问题上也提供了一种碳材料表面电子密度的简单调控方式。”王丹研究员强调到。    最后,悉尼科技大学的汪国秀教授展望到:“这种对二维氮化碳材料表面选择性修饰的思路,将有望在催化、电子、靶向治疗等诸多领域带来更加广阔的应用。”
  • 《从6小时到100秒:美国科学家研发超高效碳纤维复合材料打印技术 》

    • 来源专题:智能制造
    • 编译者:icad
    • 发布时间:2025-07-23
    • 2025年5月,科罗拉多州立大学和亚利桑那州立大学的研究人员成功开发出一种革命性的增材制造方法,可快速制造高性能碳纤维增强热固性复合材料。这项发表在 Nature Communications期刊上的研究,展示了通过原位光热转换实现即时固化,彻底改变了复合材料的生产方式。 研究通讯作者Mostafa Yourdkhani教授表示:"我们的技术消除了传统复合材料制造中的主要瓶颈——昂贵的模具和耗时的热固化过程,这为航空航天和汽车工业的轻量化结构部件制造开辟了新途径。" 创新技术原理 此方法巧妙结合了热响应性二环戊二烯(DCPD)树脂与安装在机器人平台上的低功率蓝色激光。当激光照射到碳纤维上时,纤维能在200毫秒内吸收光能并转换为热能,将温度迅速提高到220-240°C,使周围的树脂立即固化。这一过程不仅可以在固体表面上进行,还能在空中实现自由成形打印。 传统制造工艺中,模具成本可能占最终产品成本的30%以上,并且需要长达6小时的烘箱固化,此项技术可以在100秒内完成一个双层复合支架的打印,能耗仅为传统方法的0.01%。 研究团队证明,通过这种方法制造的复合材料在机械性能上与传统固化的样品相当,具有相似的弯曲模量和玻璃化转变温度(约160°C)。在连续纤维复合材料中,碳纤维体积分数高达70%,而孔隙含量低至0-1.5%,表明打印质量极高。 打印速度可达1.5米/分钟,研究人员表示,如使用更高功率的激光,速度还可进一步提高。此系统能在不同表面之间连续打印长达1.8米的结构,为大型复杂形状的复合材料结构制造提供了可能。 研究成员表示:"我们的方法不仅适用于碳纤维,初步测试表明芳纶纤维也能取得良好效果,这意味着该技术具有广泛的适应性,可用于各种增强纤维和几何形状。" 行业应用前景 这项研究为高性能复合材料制造领域带来了重大突破,有望在航空航天、汽车、船舶和能源等行业找到广泛应用。研究人员计划进一步优化工艺参数并探索更多材料组合,以满足不同行业的具体需求。