The composite structure of metal nanoparticle and metal film can be used as a surface-enhanced Raman scattering (SERS) substrate to significantly enhance the Raman signal of adsorbed molecules due to the strong coupling between local surface plasmons and propagating surface plasmons. An SERS substrate of the composite structure with gold nano-cubes and gold film separated by polymethylmethacrylate (PMMA) film is proposed. The optimum thickness of PMMA is 15 nm obtained by numerical simulation through using finite element method. The composite structure of PMMA spacer with a thickness of 14 nm is prepared experimentally. Using R6G as the Raman probe molecules and He-Ne laser with a wavelength of 633 nm as an excitation source, the SERS effect of the composite structure and single gold nano-cubes are studied. It is found that the composite structure can make the probe molecules produce a stronger Raman signal than the single structure. Furthermore, the SERS spectra of R6G molecules on the composite structure un

Continuous improvement in nanofabrication and nano-characterization capabilities have changed projections about the role that metals could play in developing the new optical devices. Surface plasmon polaritons are evanescent waves that propagate along a metal-dielectric interface. They can be laterally confined below the diffraction limit by using subwavelength metal structures, rendering them attractive to the development of miniaturized optical devices. A surface plasmon polariton refractive index sensor and filter which consist of two metal-insulator-metal (MIM) waveguides coupled to each other by a ring resonator embedded by cross structure are proposed. And the transmission characteristics of surface plasmon polaritons are studied in our proposed structure. The transmission properties of such a structure are simulated by the finite element method, and the eigenvalue wavelengths of the ring resonator are calculated theoretically. The sensing characteristics of such a structure are systematically analyzed

Identifying the most important nodes, or ranking the node importance by using the method of quantitative analysis in large scale networks are important problems in the complex networks. In this article, the metrics for node importance ranking in complex networks are reviewed and the latest progresses in this field are summarized from two prospects: the network structure and the spreading dynamics. The merits, weaknesses and applicable conditions of different node importance ranking metrics are analyzed. Finally, several important open problems are outlined as possible future directions.

A nanoscale memristor can replace the nonlinear part of a chaotic system, which can greatly reduce the physical size of the chaotic system. More importantly, it can enhance the complexity of the chaotic system and the randomness of signals. In this paper, a new memristor-based chaotic system is designed based on a new three-dimensional autonomous chaotic system. In order to study the complex dynamic characteristics of the memristive system, the chaotic system is investigated by the theoretical derivation, numerical simulation, stabilization of equilibrium points, and Lyapunov exponent spectrum. The influences of different parameters on the phase diagram and the stability of equilibrium point of this system are also discussed in detail. It is interesting that when system parameters a and c take different values, the location and stability of the equilibrium point of the system will be changed, then two scrolls of the system will be overturned at a different angle, and it will produce a different degree of alia

Mixing enhancement for supersonic mixing layer is of great importance for developing scramjet engine. The growth rate of supersonic mixing layer is smaller than that of subsonic mixing layer. As the compressibility increases, the mixing enhancement becomes more difficult. Plasma synthetic jet is regarded as a promising flow control technology. The plasma synthetic jet generator can produce high energy jet. This generator has no moving parts and does not need additional gas source. It is the first time that plasma synthetic jet has been used to enhance the mixing in supersonic mixing layers. The influence of plasma synthetic jet on the supersonic mixing layer is investigated experimentally and numerically. The experiments are conducted in the low noise supersonic mixing layer wind tunnel. The Mach number of upper stream and lower stream are 1.37 and 2.39 respectively. The convective Mach number of this wind tunnel is 0.32. The plasma synthetic jet actuators are installed in the splitter plate. The distance bet

The current source reconstruction and magnetic imaging is a new technique to non-invasively obtain spatial information regarding cardiac electrical activity using magnetocardiogram (MCG) signals measured by the superconducting quantum interference device (SQUID) on the human thorax surface. Using MCG signals to reconstruct distributed current sources needs to solve the inverse problem of magnetic field. The beamforming is a type of spatial filter method that has been used for distributed source reconstruction and source imaging in electroencephalogram (EEG) and magnetoencephalogram (MEG). In this paper, the dipole moment of distributed current source is estimated with corresponding each spatial filter based on the cardiac source field model. The purpose is to enhance the intensity contrast of the dipole moment of distributed current sources in distributed source spatial spectrum estimation with beamforming, so that the reconstructed-pseudo sources beyond the heart can be removed for imaging cardiac electric a

The potential energy curves and transition dipole moments (TDMs) for three Lambda-S states (X-2 Sigma(+), A(2)Pi, and B-2 Sigma(+)) of potassium chloride anion (KCl-) are investigated by using multi-reference configuration interaction (MRCI) method. The def2-AQZVPP-JKFI of K atom and AV5Z-DK all-electron basis set of Cl atom are used in all calculations. The Davidson correction, core-valence (CV) correction, and spin-orbit coupling effect (SOC) are also considered. In the complete active self-consistent field (CASSCF) calculations, eight molecular orbitals are selected as active orbitals, which includ K 4s4p and Cl 3s3p shells; K 3p shell is closed orbital, and the remaining shells (K 1s2s3s and Cl 1s2s2p) are frozen orbitals. In the MRCI+Q calculations, K 3p shell is used for the CV correction. There are 15 electrons in the correlation energy calculations. Then, their spectroscopic parameters, Einstein coefficients, Franck-Condon factors, and radiative lifetimes are obtained by solving the radial Schrodinger

The post-hole convolutes (PHCs) are used in pulsed high-power generators to add the output currents of the magnetically insulated transmission lines (MITLs) and deliver the combined current to a single MITL. Then the single MITL delivers the combined current to the load. Magnetic insulation of electron flow is lost near the post-hole convolute (PHC) in the high-power generator. Although cathode plasma and anode ions are widely considered as the factors of the magnetic insulation collapse, there are some other factors that are needed to study. In this paper, the cathode negative ions are considered in the PIC simulation of a single-hole PHC. In this work, we examine the evolution and dynamics of the negative ions in the PHC. The simulation results demonstrate that there are no current losses while the cathode emits only electrons, little current losses (10 kA out of a total current of 900 kA) while the cathode emits plasma including electrons and ions, and obvious current losses (20 kA out of a total current o

The dissociation dynamics of HD+ molecule in an intense field is investigated by using an accurate three-dimensional time-dependent wave packet approach. When the 790-nm laser pulse interacts with HD+ molecule, the lowest electronic 1s sigma and 2p sigma states are coupled. Due to the existence of the permanent electric dipole moment, the transitions in HD+ molecule involve the direct absorption of an odd and even number of photons, thereby opening different pathways for dissociation. The model of the photon-dressed states is presented to analyze the possible dissociation pathways of HD+ molecule. The laser-induced dissociation of HD+ molecule is mainly composed of the four pathways: the direct one-photon absorption, the net two-photon absorption, the direct two-photon absorption, and the direct two-photon absorption. To reveal the dissociation mechanism of HD+ molecule, the kinetic energy resolved spectra are calculated at the given laser intensities. It is found that the dissociation pathways are strongly d

Phthalocyanine (Pc) is a kind of important photoelectric material, but a lot of questions remain to be clarified, like the relationship between the structure of Pc and its photoelectric property. High pressure is a powerful tool to study the structure transformation. High pressure study on piezochromic materials, which shows color change under high pressure due to structure changing, serves as an effectively way of studying the relationship between materials' structure and photoelectric property. In this work Raman spectrum is employed to study the phase change of a phase metal-free Pc (alpha-H2Pc) under high pressure, meanwhile the effect of pressure on fluorescence (FL) is also studied to show how the Pc's structure affects the photoelectric property. The diamond anvil cell is employed to achieve the high pressure condition, by using NaCl as a pressure transmitting medium. And Raman and FL measurements are performed by using a LabRam HR Evolution spectrometer equipped with a 473 nm laser. The Raman spectra

As the demand for electronic devices increases continually, the spintronic materials have played an important role in materials science and electronics. Spintronic devices have excellent properties such as non-volatility, low power consumption, and high integration compared with conventional semiconductor devices. In this paper, we investigate the electronic structure, magnetic and optical properties of the semiconductor GaSb doped with 3d transition metal Cr, based on first-principles calculations. The compounds are constructed by replacing some Ga atoms with Cr in zinc-blende GaSb semiconductor, where the concentrations of the Ga atoms replaced are 0, 0.25, 0.50, and 0.75. We adopt the projected plane wave method and the electronic exchange correlation functional PBE in the generalized gradient approximation. Band gap is modified by Heyd-Scuseria-Ernzerhof (HSE06) functional. We study the equilibrium lattice constants of Cr-doped GaSb in zinc-blende structure at different concentrations. The energy of nonma

In this paper, two generalized likelihood ratio (GLR) detectors are presented for the case of multiple snapshots of test data to detect the presence of an underwater acoustic source in the deep ocean. The two GLR detectors are termed the eigenvalue detector (EVD) and the constant false alarm rate eigenvalue detector (CFAR EVD), respectively. Theoretical analysis and numerical results show that for a given input signal-to-noise ratio (SNR) of the array, the GLR detectors achieve higher output SNRs when the spatial dimension of test data decreases. To further enhance the detection performances of the GLR detectors, we propose a dimension-reduced (DR-GLR) method based on array sampling of modal information. This DR-GLR method combines the characteristics of sound propagation and array receiving. According to normal mode theory, acoustic signals emitted from the acoustic source lie in the modal space spanned by the sampled modal information of the array. Resulting from the restriction of the array size, it often

Self-driven particle systems consist of particles that can extract energy from the environment and transform into active motion, and thus are significantly different from the classical passive particle systems. For such an active system, the question of whether there is a classical equation of state (EOS) has caused spreading concern. Recent studies analyzed the validity of the EOS of an active system under the harmonic potential (Solon et. al, 2015 Nature Physics, 11 673). In contrast, this paper explores the conditions for and the specific forms of the EOS of an active system under electric double-layer interaction between the wall and the particles. The results show that the wall pressure is related to the shape of the active particles. When a wall exerts a moment on the active particles, the particles orientation turns to the equilibrium state parallel to the wall surface under the action of the moment, and the increase of the wall-particle interaction strength enhances the parallel-orientation trend, whi

Mid-infrared optical parametric oscillator (OPO) operating in the mid-infrared transmission window (3-5 mu m wavelength range) is one of hot issues in the field of laser system. It has many applications in environmental detection, remote sensing, and medicine. Besides, this laser system is used as a key component of infrared countermeasures. The optical damage limit of nonlinear crystal is a great challenge to the mid-infrared OPO which is pumped by a nanosecond laser source. Therefore, the pump beam diameter should be appropriately increased to avoid damaging the crystal when scaling a nanosecond OPO to high pulse energy. The result of this design is that the Fresnel number in the cavity is increased and the beam quality is deteriorated. In order to improve the beam quality of mid-infrared OPO laser, a 90 degrees image-rotating four-mirror non-planar ring resonator structure is designed. The advantages of this design include the general ring resonators, such as greatly reduced feedback into the pump laser an

The characteristic basis function method is known as an effective method to solve the electromagnetic scattering problems, but the convergence of the iterative solution of the reduced matrix equation is slow when the characteristic basis function method is used to analyze the electromagnetic scattering characteristics of the electrically large target. In order to mitigate this problem, a new reduced matrix construction method is proposed to improve the iterative solution efficiency of characteristic basis function method in this paper. Firstly, the singular value decomposition technique is used to compress the incident excitations, and the characteristic basis functions of each sub-domain under the new excitations are solved. Then, the new excitations and the characteristic basis functions are defied as the testing and basis functions to construct the reduced matrix. The diagonal sub-matrices of the reduced matrix constructed by the new testing and basis functions are all identity matrices, thereby improving

With the rapid development of low-dimensional materials, the opportunity that promotes the development of micro/nano fluid devices, a new low-dimensional material black phosphorus (BP) has attracted wide attention due to its excellent properties, and has been applied to many areas. In this paper, the influences of driving force, water-BP anisotropy, channels' width and the number of black phosphorus layers on the flow characteristics of water molecules in the nanochannels are studied by molecular dynamics based on the Poiseuille flow model. The results show that the boundary slip velocity increases with the driving force increasing. The anisotropy will also affect the flow characteristics of water molecules in the nanochannel under the pressure driving the Poiseuille flow. Specifically, the boundary slip velocity decreases with the chirality angle increasing, and the viscosity coefficient of water molecules is still not affected by the anisotropy. The natural rippled structure of the BP surface leads to the c

The complex fluctuation of heart rate variability reflects the autonomous regulation function of the heart. In this paper, a novel method of measuring the heart rate variability is proposed. Firstly, the heart rate variability signal is decomposed by the improved complete ensemble empirical mode decomposition with adaptive noise method, and the multiple intrinsic mode functions are obtained, and the bubble entropy of each intrinsic mode function is calculated to obtain an entropy value vector. Then, the vector is mapped to a network based on a limited penetrable horizontal visibility graph method. By calculating various characteristic parameters of the network, the coupling relationship between the nonlinear features of heart rate variability in different time-frequency scale states are studied. The characteristic parameters include mean value of aggregation coefficient (MC), the characteristic path length (CL), the topological entropy of network (TE), the network level weighted bubble value (WB), and the pse

Rabi model is a popular model in quantum optics and describes a two-level system coupling to a quantum resonator. The fruitful physics appears when the coupling strength is comparable to the frequency of the resonator. We investigate the Bose gases of Raman induced spin-orbit coupling with an external harmonic trapping. Using the displacement Fock state in quantum optics we seek for an approximate ground state. We find the superposition state of left and right displaced oscillator state with odd parity has lower energy than the displaced state itself. Besides, we study the time evolution of both the momentum and the position of the system at single particle level to demonstrate the Zitterbewegung oscillating characteristics, which present an intuitive physical picture and are in qualitative agreement with the relevant experimental results. The results are useful to study the Rabi model in deep-strong coupling regime, the model that is difficult to realize in today' s experiment based on the high controllabili

In this paper, the mixed films with different rubrene-to-MoO3 ratios are deposited on the substrates of Si, indium tin oxide and quartz glass by using the thermal evaporation technique. First, these films are characterized by atomic force microscopy and X-ray diffraction in order to identify their surface morphology and their structure properties. The results show that all the films are amorphous and the film has the best flatness when the rubrene-to-MoO3 ratio is 2:1. Second, the optical properties of the mixed films are investigated by both photoluminescence (PL) spectra and absorption spectra. The optical band gap of rubrene and MoO3 are 2.2 eV and 3.49 eV respectively and there is almost no absorption about rubrene and MoO3 in the near-infrared (NIR) region. However the PL spectrum shows a peak in NIR region and it indicates that the interface between rubrene and MoO3 possesses an abrupt discontinuity at the vacuum level, resulting in electron wave functions overlapping and charge-transfer complex (CTC) f

Silicon based germanium devices are crucial parts of optoelectronic integration as CMOS feature size continuously decreases. Germanium has attracted increasing attention due to its higher electron and hole mobility, larger optical absorption coefficient as well as lower processing temperature than those of silicon. However, the high diffusion coefficient and low solid solubility about n-type dopant and relatively high thermal budget required for high n-type doping in Ge make it difficult to achieve high activation n-type doping and excellent n(+)/p shallow junction for source/drain in the nano-scaled n-MOSFET (here MOSFET stands for). The high activation concentration and shallow junction n-type doping in Ge are greatly beneficial to the scaled Ge n-MOSFET technology. In this work, the ohmic contact of Al/n(+)Ge and Ge n(+)/p junction fabricated by a combination of low temperature pre-annealing process and excimer laser annealing for phosphorus-implanted germanium are demonstrated. Prior to excimer laser anne