An experimental study on rotating detonation is presented in this paper. The study was focused on the possibility of using rotating detonation in a rocket engine. The research was divided into two parts: the first part was devoted to obtaining the initiation of rotating detonation in fuel–oxygen mixture; the second was aimed at determination of the range of propagation stability as a function of chamber pressure, composition, and geometry. Additionally, thrust and specific impulse were determined in the latter stage. In the paper, only rich mixture is described, because using such a composition in rocket combustion chambers maximizes the specific impulse and thrust. In the experiments, two kinds of geometry were examined: cylindrical and cylindrical-conic, the latter can be simulated by a simple aerospike nozzle. Methane, ethane, and propane were used as fuel. The pressure–time courses in the manifolds and in the chamber are presented. The thrust–time profile and detonation velocity calculated from measured pressure peaks are shown. To confirm the performance of a rocket engine with rotating detonation as a high energy gas generator, a model of a simple engine was designed, built, and tested. In the tests, the model of the engine was connected to the dump tank. This solution enables different environmental conditions from a range of flight from 16 km altitude to sea level to be simulated. The obtained specific impulse for pressure in the chamber of max. 1.2 bar and a small nozzle expansion ratio of about 3.5 was close to 1,500 m/s.

A rotating detonation propagating at nearly Chapman–Jouguet velocity is numerically stabilized on a two-dimensional simple chemistry flow model. Under purely axial injection of a combustible mixture from the head end of a toroidal section of coaxial cylinders, the rotating detonation is proven to give no average angular momentum at any cross section, giving an axial flow. The detonation wavelet connected with an oblique shock wave ensuing to the downstream has a feature of unconfined detonation, causing a deficit in its propagation velocity. Due to Kelvin–Helmholtz instability existing on the interface of an injected combustible, unburnt gas pockets are formed to enter the junction between the detonation and oblique shock waves, generating strong explosions propagating to both directions. Calculated specific impulse is as high as 4,700 s.

The current study investigates the use of pulsed plasma jets (spark jets) to reduce the separation induced by shock wave-boundary layer interaction generated by a $$20^{\circ }$$ 20 ∘ compression ramp in a Mach 3 flow with a Reynolds number of 5,400, based on the undisturbed boundary layer momentum thickness. Surface oil streak visualization is used in a parametric study to determine the optimum pulsing frequency of the jet, the optimum distance of the jet from the compression corner, and the optimum configuration of the jets. Several 3-jet actuator configurations are tested, including those where the jets are pitched, and pitched and skewed. The jet pulsing frequency is varied between 2 and 4 kHz, corresponding to a Strouhal number based on separation length of 0.012 and 0.023. Particle image velocimetry is used to characterize the effect that the actuators have on the reattached boundary layer profile on the ramp surface. Results show that plasma jets pitched at $$20^{\circ }$$ 20 ∘ from the wall, and pulsed at a Strouhal number of 0.018, can reduce the distance between the separation line and the compression ramp corner by up to 40 % and increase the integrated momentum in the downstream reattached boundary layer, albeit with a concomitant increase in the shape factor.

This study investigates a combined technique of both an active flow control concept that uses counterflowing jets and an aerodisk spike as a new method to significantly modify external flowfields and heat reduction in a hypersonic flow around a nose cone. The coolant gas (Carbon Dioxide and Helium) is chosen to inject from the tip of the nose cone to cool the recirculation region. The gases are considered to be ideal, and the computational domain is axisymmetric. The analysis shows that the counterflowing jet has significant effects on the flowfield and reduces the heat load over the nose cone. The Helium jet is found to have a relatively more effective cooling performance.

This paper presents a review of research on shock control bumps (SCBs), a class of flow control device with potential for application to transonic wings. Beginning with a brief review of the origins of the SCB concept, the primary focus is on the more recent studies from the last decade. Results from both experimental and numerical work are considered and the synergy between these two approaches to SCB research is critically explored. It is shown that the aerodynamic performance enhancement potential of SCBs, namely their capacity for drag reduction and delaying the onset of buffet for transonic wings, has been widely demonstrated in the literature, as has the high sensitivity of SCB performance to flow conditions including shock strength and position, and post-shock adverse pressure gradient. These characteristic features of SCBs are relatively well explained in terms of the flow physics that have been observed for different bump geometries. This stems from a number of studies that have focused on the balance of viscous and inviscid flow features and also the mechanism by which finite span SCBs generate streamwise vorticity. It is concluded that our understanding of SCBs is reaching an advanced level of maturity for SCBs in simple configurations and steady flow fields. However, SCB performance in unsteady flow and on swept wings requires further investigation before the concept can be considered a viable candidate for transonic wings. These investigations should adopt a multi-disciplinary approach combining carefully designed experiments and targeted computations. Finally, two concepts for future SCB research are suggested: the adaptive SCB and SCBs in engine intakes.

Rotating detonation engines have the potential to achieve the high propulsive efficiencies of detonation cycles in a simple and effective annular geometry. A two-dimensional Euler simulation is modified to include mixing factors to simulate the imperfect mixing of injected reactant streams. Contrary to expectations, mixing is shown to have a minimal impact on performance. Oblique detonation waves are shown to increase local stream thermal efficiency, which compensates for other losses in the flow stream. The degree of reactant mixing is, however, a factor in controlling the stability and existence of rotating detonations.

Broadband shock-associated noise (BBSAN) is a particular high-frequency noise that is generated in imperfectly expanded jets. BBSAN results from the interaction of turbulent structures and the series of expansion and compression waves which appears downstream of the convergent nozzle exit of moderately under-expanded jets. This paper focuses on the impact of the pressure waves generated by BBSAN from a large eddy simulation of a non-screeching supersonic round jet in the near-field. The flow is under-expanded and is characterized by a high Reynolds number $$\mathrm{Re}_\mathrm{j} = 1.25\times 10^6$$ Re j = 1.25 × 10 6 and a transonic Mach number $$M_\mathrm{j}=1.15$$ M j = 1.15 . It is shown that BBSAN propagates upstream outside the jet and enters the supersonic region leaving a characteristic pattern in the physical plane. This pattern, also called signature, travels upstream through the shock-cell system with a group velocity between the acoustic speed $$U_{\mathrm{c}}-a_\infty $$ U c - a ∞ and the sound speed $$a_\infty $$ a ∞ in the frequency–wavenumber domain $$(U_\mathrm{c}$$ ( U c is the convective jet velocity). To investigate these characteristic patterns, the pressure signals in the jet and the near-field are decomposed into waves traveling downstream ( $$p^+$$ p + ) and waves traveling upstream ( $$p^-$$ p - ). A novel study based on a wavelet technique is finally applied on such signals in order to extract the BBSAN signatures generated by the most energetic events of the supersonic jet.

Homogeneous and inhomogeneous ignition of real and surrogate fuels were imaged in two Stanford shock tubes, revealing the influence of small particle fragmentation. n-Heptane, iso-octane, and Jet A were studied, each mixed in an oxidizer containing 21% oxygen and ignited at low temperatures (900–1000 K), low pressures (1–2 atm), with an equivalence ratio of 0.5. Visible images (350–1050 nm) were captured through the shock tube endwall using a high-speed camera. Particles were found to arrive near the endwalls of the shock tubes approximately 5 ms after reflection of the incident shock wave. Reflected shock wave experiments using diaphragm materials of Lexan and steel were investigated. Particles collected from the shock tubes after each experiment were found to match the material of the diaphragm burst during the experiment. Following each experiment, the shock tubes were cleaned by scrubbing with cotton cloths soaked with acetone. Particles were observed to fragment after arrival near the endwall, often leading to inhomogeneous ignition of the fuel. Distinctly more particles were observed during experiments using steel diaphragms. In experiments exhibiting inhomogeneous ignition, flames were observed to grow radially until all the fuel within the cross section of the shock tube had been consumed. The influence of diluent gas (argon or helium) was also investigated. The use of He diluent gas was found to suppress the number of particles capable of causing inhomogeneous flames. The use of He thus allowed time history studies of ignition to extend past the test times that would have been limited by inhomogeneous ignition.

The modeling of human body biomechanics resulting from blast exposure poses great challenges because of the complex geometry and the substantial material heterogeneity. We developed a detailed human body finite element model representing both the geometry and the materials realistically. The model includes the detailed head (face, skull, brain and spinal cord), the neck, the skeleton, air cavities (lungs) and the tissues. Hence, it can be used to properly model the stress wave propagation in the human body subjected to blast loading. The blast loading on the human was generated from a simulated C4 explosion. We used the highly scalable solvers in the multi-physics code CoBi for both the blast simulation and the human body biomechanics. The meshes generated for these simulations are of good quality so that relatively large time-step sizes can be used without resorting to artificial time scaling treatments. The coupled gas dynamics and biomechanics solutions were validated against the shock tube test data. The human body models were used to conduct parametric simulations to find the biomechanical response and the brain injury mechanism due to blasts impacting the human body. Under the same blast loading condition, we showed the importance of inclusion of the whole body.

This work is concerned with the effect of cavity collapse in non-ideal explosives as a means of controlling their sensitivity. The main objective is to understand the origin of localised temperature peaks (hot spots) which play a leading order role at the early stages of ignition. To this end, we perform two- and three-dimensional numerical simulations of shock-induced single gas-cavity collapse in liquid nitromethane. Ignition is the result of a complex interplay between fluid dynamics and exothermic chemical reaction. In order to understand the relative contribution between these two processes, we consider in this first part of the work the evolution of the physical system in the absence of chemical reactions. We employ a multi-phase mathematical formulation which can account for the large density difference across the gas–liquid material interface without generating spurious temperature peaks. The mathematical and physical models are validated against experimental, analytic, and numerical data. Previous inert studies have identified the impact of the upwind (relative to the direction of the incident shock wave) side of the cavity wall to the downwind one as the main reason for the generation of a hot spot outside of the cavity, something which is also observed in this work. However, it is also apparent that the topology of the temperature field is more complex than previously thought and additional hot spot locations exist, which arise from the generation of Mach stems rather than jet impact. To explain the generation mechanisms and topology of the hot spots, we carefully follow the complex wave patterns generated in the collapse process and identify specifically the temperature elevation or reduction generated by each wave. This enables tracking each hot spot back to its origins. It is shown that the highest hot spot temperatures can be more than twice the post-incident shock temperature of the neat material and can thus lead to ignition. By comparing two-dimensional and three-dimensional simulation results in the context of the maximum temperature observed in the domain, it is apparent that three-dimensional calculations are necessary in order to avoid belated ignition times in reactive scenarios.

This work is concerned with the effect of cavity collapse in non-ideal explosives as a means of controlling their sensitivity. The main objective is to understand the origin of localised temperature peaks (hot spots) which play a leading order role at the early stages of ignition. To this end, we perform two- and three-dimensional numerical simulations of shock-induced single gas-cavity collapse in liquid nitromethane. Ignition is the result of a complex interplay between fluid dynamics and exothermic chemical reaction. In the first part of this work, we focused on the hydrodynamic effects in the collapse process by switching off the reaction terms in the mathematical formulation. In this part, we reinstate the reactive terms and study the collapse of the cavity in the presence of chemical reactions. By using a multi-phase formulation which overcomes current challenges of cavity collapse modelling in reactive media, we account for the large density difference across the material interface without generating spurious temperature peaks, thus allowing the use of a temperature-based reaction rate law. The mathematical and physical models are validated against experimental and analytic data. In Part I, we demonstrated that, compared to experiments, the generated hot spots have a more complex topological structure and that additional hot spots arise in regions away from the cavity centreline. Here, we extend this by identifying which of the previously determined high-temperature regions in fact lead to ignition and comment on the reactive strength and reaction growth rate in the distinct hot spots. We demonstrate and quantify the sensitisation of nitromethane by the collapse of the isolated cavity by comparing the ignition times of nitromethane due to cavity collapse and the ignition time of the neat material. The ignition in both the centreline hot spots and the hot spots generated by Mach stems occurs in less than half the ignition time of the neat material. We compare two- and three-dimensional simulations to examine the change in topology, temperatures, and reactive strength of the hot spots by the third dimension. It is apparent that belated ignition times can be avoided by the use of three-dimensional simulations. The effect of the chemical reactions on the topology and strength of the hot spots in the timescales considered is also studied, in a comparison between inert and reactive simulations where maximum temperature fields and their growth rates are examined.

A series of compaction experiments was conducted to evaluate the mechanical, reactive, and deflagration-to-detonation transition behavior in Alliant Bullseye powder. Using a novel application of photonic Doppler velocimetry and light fibers, the experiments measured both compaction and combustion waves in porous beds of Bullseye subjected to impact by gun-driven pistons. Relationships between initial piston velocity and transition distance are shown. Comparison is made between the Bullseye response and that found in classic Type I DDT.

Military and law enforcement personnel may be routinely and repetitively exposed to low-level blast (LLB) overpressure during training and in operations. This repeated exposure has been associated with symptoms similar to that reported for sports concussion. This study reports LLB exposure for various military and law enforcement sources in operational training environments. Peak overpressure and impulse data are presented from indoor breaching, outdoor breaching, shotgun door breaching, small arms discharge, and mortar and artillery fire missions. Data were collected using the Black Box Biometrics (B3) Blast Gauge sensors. In all cases, sensors were attached to the operators and, where possible, also statically mounted to walls or other fixed structures. Peak overpressures from below 1 psi (7 kPa) to over 12 psi (83 kPa) were recorded; all values reported are uncorrected for incidence angle to the blast exposure source. The results of these studies indicate that the current minimum safe distance calculations are often inaccurate for both indoor and outdoor breaching scenarios as true environmental exposure can consistently exceed the 4 psi (28 kPa) incident safe threshold prescribed by U.S. Army doctrine. While ballistic (shotgun) door breaching and small arms firing only expose the operator to low peak exposure levels, the sheer number of rounds fired during training may result in an excessive cumulative exposure. Mortar and artillery crew members received significantly different overpressure and impulse exposures based on their position (job) relative to the weapon. As both the artillery and mortar crews commonly fire hundreds of rounds during a single training session they are also likely to receive high cumulative exposures. These studies serve to provide the research community with estimates for typical operator exposure across a range of operational scenarios or in the discharge of various weapons systems.

Macroscale models of shock–particle interactions require closure terms for unresolved solid–fluid momentum and energy transfer. These comprise the effects of mean as well as fluctuating fluid-phase velocity fields in the particle cloud. Mean drag and Reynolds stress equivalent terms (also known as pseudo-turbulent terms) appear in the macroscale equations. Closure laws for the pseudo-turbulent terms are constructed in this work from ensembles of high-fidelity mesoscale simulations. The computations are performed over a wide range of Mach numbers (M) and particle volume fractions ($$\phi )$$ ϕ) and are used to explicitly compute the pseudo-turbulent stresses from the Favre average of the velocity fluctuations in the flow field. The computed stresses are then used as inputs to a Modified Bayesian Kriging method to generate surrogate models. The surrogates can be used as closure models for the pseudo-turbulent terms in macroscale computations of shock–particle interactions. It is found that the kinetic energy associated with the velocity fluctuations is comparable to that of the mean flow—especially for increasing M and $$\phi $$ ϕ . This work is a first attempt to quantify and evaluate the effect of velocity fluctuations for problems of shock–particle interactions.

The spatial and temporal distribution of pressure and impulse from explosives buried in saturated cohesive and cohesionless soils has been measured experimentally for the first time. Ten experiments have been conducted at quarter-scale, where localised pressure loading was measured using an array of 17 Hopkinson pressure bars. The blast pressure measurements are used in conjunction with high-speed video filmed at 140,000 fps to investigate in detail the physical processes occurring at the loaded face. Two coarse cohesionless soils and one fine cohesive soil were tested: a relatively uniform sand, a well-graded sandy gravel, and a fine-grained clay. The results show that there is a single fundamental loading mechanism when explosives are detonated in saturated soil, invariant of particle size and soil cohesion. It is also shown that variability in localised loading is intrinsically linked to the particle size distribution of the surrounding soil.

This paper investigates the application of mesh adaptation techniques in the non-ideal compressible fluid dynamic (NICFD) regime, a region near the vapor–liquid saturation curve where the flow behavior significantly departs from the ideal gas model, as indicated by a value of the fundamental derivative of gasdynamics less than one. A recent interpolation-free finite-volume adaptive scheme is exploited to modify the grid connectivity in a conservative way, and the governing equations for compressible inviscid flows are solved within the arbitrary Lagrangian–Eulerian framework by including special fictitious fluxes representing volume modifications due to mesh adaptation. The absence of interpolation of the solution to the new grid prevents spurious oscillations that may make the solution of the flow field in the NICFD regime more difficult and less robust. Non-ideal gas effects are taken into account by adopting the polytropic Peng–Robinson thermodynamic model. The numerical results focus on the problem of a piston moving in a tube filled with siloxane $$\mathrm {MD_4M}$$ MD 4 M , a simple configuration which can be the core of experimental research activities aiming at investigating the thermodynamic behavior of NICFD flows. Several numerical tests involving different piston movements and initial states in 2D and 3D assess the capability of the proposed adaption technique to correctly capture compression and expansion waves, as well as the generation and propagation of shock waves, in the NICFD and in the non-classical regime.

In this paper, we continue our research on the numerical study of convergence to steady-state solutions for a new class of finite volume weighted essentially non-oscillatory (WENO) schemes in Zhu and Shu (J Comput Phys 349:80–96, 2017), from tensor product meshes to triangular meshes. For the case of triangular meshes, this new class of finite volume WENO schemes was designed for time-dependent conservation laws in Zhu and Qiu (SIAM J Sci Comput 40(2):A903–A928, 2018) for the third- and fourth-order versions. In this paper, we extend the design to a new fifth-order version in the same framework to keep the essentially non-oscillatory property near discontinuities. Similar to the case of tensor product meshes in Zhu and Shu (2017), by performing such spatial reconstruction procedures together with a TVD Runge–Kutta time discretization, these WENO schemes do not suffer from slight post-shock oscillations that are responsible for the phenomenon wherein the residues of classical WENO schemes hang at a truncation error level instead of converging to machine zero. The third-, fourth-, and fifth-order finite volume WENO schemes in this paper can suppress the slight post-shock oscillations and have their residues settling down to a tiny number close to machine zero in steady-state simulations in our extensive numerical experiments.

Artificial viscosity is used in the computer simulation of high Reynolds number flows and is one of the oldest numerical artifices. In this paper, I will describe the origin and the interpretation of artificial viscosity as a physical phenomenon. The basis of this interpretation is the finite scale theory, which describes the evolution of integral averages of the fluid solution over finite (length) scales. I will outline the derivation of finite scale Navier–Stokes equations and highlight the particular properties of the equations that depend on the finite scales. Those properties include enslavement, inviscid dissipation, and a law concerning the partition of total flux of conserved quantities into advective and diffusive components.

The influence of various chamber geometries on shock wave reflections near the head end of rotating detonation engines was investigated. A hydrogen/air one-step chemical reaction model was used. The results demonstrated that the variation in flow field along the radial direction was not obvious when the chamber width was small, but became progressively more obvious as the chamber width increased. The thrust increased linearly, and the detonation height and the fuel-based gross specific impulse were almost constant as the chamber width increased. Near the head end, shock waves reflected repeatedly between the inner and outer walls. Both regular and Mach reflections were found near the head end. The length of the Mach stem increased as the chamber length increased. When the chamber width, chamber length and injection parameters were the same, the larger inner radius resulted in more shock wave reflections between the inner and outer walls. The greater the ratio of the chamber width to the inner radius, the weaker the shock wave reflection near the head end. The detonation height on the outer wall and the thrust, both increased correspondingly, while the specific impulse was almost constant as the inner radius of the chamber increased. The numerical shock wave reflection phenomena coincided qualitatively with the experimental results.

Numerical simulations are carried out in the non-continuum flow regime to analyze flow features in the shock layer of a reentry vehicle. A new solver, rarefiedHypersonicFoam, has been developed based on the OpenFOAM platform, which can simulate the intermediate hypersonic reacting flow regime, where chemical non-equilibrium effects are imperative. The solver accommodates features to model air chemistry, multispecies transport, thermodynamic properties of high-temperature air, and non-equilibrium boundary conditions. The solver is validated with ballistic range experimental data for shock standoff distance and heat flux values over a conical reentry vehicle. Results have exhibited good agreement with the experimental data and show significant improvement when compared with the conventional high-speed compressible flow solver. The modified solver is used to analyze hypersonic flow over a bi-conic reentry capsule at different altitudes and velocities in the rarefied hypersonic flow regime. The results show that at lower altitude, chemical reactions absorb a considerable amount of heat compared to higher altitude. The rate of reaction reduces with the decrease in the flow velocity, which results in reduced heat flux values. It is observed that, if only rarefaction effects are considered in the solver, it overpredicts the heat flux values. Therefore, incorporation of chemical reactions while analyzing rarefied hypersonic flow fields is imperative.