A new sound source localization method with sound speed compensation is proposed to reduce the wind influence on the performance of conventional TDOA(Time Difference of Arrival) algorithms. First, the sound speed is described as a set of functions of the unknown source location, to approximate the acoustic velocity field distribution in the wind field. Then,they are introduced into the TDOA algorithm, to construct nonlinear equations. Finally, the particle swarm optimization algorithm is used to estimate the source location. The simulation results show that the proposed algorithm can significantly improve the localization accuracy for different wind velocities, source locations and test area sizes. The experimental results show that the proposed method can reduce localization errors to about 40% of the original error in a four nodes localization system.

To achieve normal velocity reconstruction of a vibrating surface with sparse measurement points, a reconstruction method is proposed by exploiting of acoustic radiation modes as expansion functions, which are capable of describing the geometric shape of a vibrating surface. Firstly, acoustic radiation modes of the vibrating surface are calculated and the relationship between normal velocity and acoustic radiation modes is built. Then actual measured normal velocity values are expressed by corresponding acoustic radiation modes and the expansion coefficients are calculated. Subsequently, all normal velocity values can be reconstructed by the obtained expansion coefficients. Experimental validations have been performed by a double-layer steel cylindrical shell with enclosed ends in.an anechoic water tank. Two cases with different wavenumber components distribution were designed by a vibration shaker and a rotor device respectively. Two experimental results both show that actual vibration distribution cannot be revealed exactly by the sparse measurement points, which corresponds to severe loss of vibration related wavenumber components. On the other hand, normal velocity and corresponding wavenumber components can be restored accurately in both two wavenumber components distribution cases according to the proposed method, which demonstrates obvious effectiveness of the proposed method.

The mechanism of interaction between the energy flows of the far-field ship noise and the near-field platform is studied, and the characteristics of frequency-time azimuth spectrum is discussed. Based on normal modes theory in acoustic vector fields, the model of the near-field platform is established, and the simulated result is similar to the investigation in shallow water. The frequency-time azimuth spectrum of the energy flow is investigated by the vector hydrophone changes with frequency. The energy flow of the far-field ship noise interacts with the near-field platform, so four kinds of stripes are shown in the frequency-time azimuth spectrum, which is the same with the investigation of sea trial. The estimation of direction of arrival appears inaccuracy, and varies with frequency. The main factor that affects the characteristics of frequency-time azimuth spectrum of resultant energy flow is the difference of sound pressure level. The estimation of the direction of arrival benefits from this when a number of sources exist in shallow water.

The UWA channel is characterized as a time-dispersive rapidly fading channel,which in addition exhibits Doppler instabilities and limited bandwidth. To eliminate intersymbol interference caused by multipath propagation, spatial diversity equalization is the main technical means. The paper combines the passive phase conjugation and spatial processing to maximize the output array gain. It uses signal-to-noise-plus-interference to evaluate the quality of signals received at different channels. The amplitude of signal is weighted using Sigmoid function. Second order PLL can trace the phase variation caused by channel, so the signal can be accumulated in the same phase. The signals received at different channels need to be normalized. It adopts fractional-decision feedback diversity equalizer(FDFDE) and achieves diversity equalization by using different channel weighted coefficients. The simulation and lake trial data processing results show that, the optimized diversity receiving equalization algorithm can improve communication system’s ability in tracking the change of underwater acoustic channel,offset the impact of multipath and noise and improve the performance of communication system.The performance of the communication receiving system is better than that of the equal gain combination. At the same time, the bit error rate(BER) reduces 1.8%.

For the study of predicting ultrasonic attenuation of elastic, spherical mixing particles in the liquid-solid two-phase system, the Monte Carlo method(MCM) is introduced,serving as a probability and statistics technique to evaluate the inside ultrasonic events during the ultrasound propagation. On the basis of ultrasonic scattering and aborption, the continuous ultrasonic waves are represented as discrete and independent phonons. By recording the scattering events, tracing the trajectory of a moving phonon and calculating the number of phonons that finally reach the receiving transducer, the ultrasonic attenuation coefficient is obtained to be a frequence-dependent spectrum. Numerical investigations have been carried out to predict and compare the ultrasonic attenuation for a solid-liquid two-phase system with a single type particle. After verifing its feasibility, such a method is then appalied into mixing particle system, where the mixing iron particles and glass beads with various ratios are set as examples for the purpose of predicting ultrasonic attenuation for the monodisperse and polydisperse mixing particle systems. The results of MCM, the ECAH model, the Lloyd & Berry(LB) model and the Waterman model match well when the particle volume concentration is lower than 10%,corresponding to iron particles and glass beads respectively. In the case of two-phase system with mixing particles, it is shown that as the particle volume concentration increases to 10%, the variation of the ultrasonic attenuation coefficient with mixing ratio yields a nonlinear tendency.The physical properties of particles can also influence ultrasonic attenuation significantly.

Influence of the elasticity of the base on vibration isolation performances of single layer, double layer and floating raft vibration isolation systems is investigated systematically.Characteristics of vibration coupling between different vibration isolation systems and different elastic bases are analyzed. Moreover the characteristics of vibration acceleration level difference and force transmissibility of different vibration isolation systems are discussed and their simplified expressions are given. In addition the required control forces of active vibration isolation under different installations of actuators for different vibration isolation systems are compared.The results show that for all vibration isolation systems, the addition of the stiffness and damping of the base can enhance their vibration acceleration level difference and force transmissibility.Moreover for floating raft vibration isolation system, the addition of the stiffness and damping of the raft can enhance its vibration isolation performance and reduce the control force required by active vibration isolation.

Analytic formulas for acoustic interference patterns in shallow water are derived by ray method. Which can be used to guide acoustic measurements with limited horizontal distances. Some necessary approximations are taken for a concise expression. The analytic formulas represent the quantitative relationships between the interference-pattern and the signal frequency, bandwidth, depth of source and horizontal distance. Monofrequent signals, complicated signals and frequency-modulated signals are all studied. Several inferences are also deduced from the formulas. Both numerical simulations and experiment data are presented to prove that these formulas and their inferences can describe the critical characters of the acoustic interference pattern in the waveguide with a satisfying precision.

The conventional finite element model(FEM) of a rod-type ultrasonic motor is usually simplified by means of continuous composite structure. Because the actual contact characteristics between the parts of the ultrasonic motor is ignored, there is bigger error between the calculated values and experimental results. Aiming at solving problem, a new modeling method of a rod-type ultrasonic motor is presented to obtain a high-accuracy FEM. The bolt pretension and the normal contact stiffness and friction coefficient of the contact surface of ultrasonic motor are all considered in this method, and the significant parameters of working mode of the motor are selected by the response surface method, and the goal of calculating the structural response rapidly is realized by building the response surface model to replace the FEM. The result of finite element model updating shows that the average error of modal frequencies of updated model drops to 0.21% from 1.20%. The accuracy of FEM is obviously improved, which indicates that the FEM updating based on response surface method is of great application value on the design for a rod-type ultrasonic motor.

By analyzing the differences between binaural recording and real listening, it was deduced that there were some unrevealed auditory localization clues, and the sound pressure distribution pattern at the entrance of ear canal was probably a clue. It was proved through the listening test that the unrevealed auditory localization clues really exist with the reduction to absurdity. And the effective frequency bands of the unrevealed localization clues were induced and summed. The result of finite element based simulations showed that the pressure distribution at the entrance of ear canal was non-uniform, and the pattern was related to the direction of sound source. And it was proved that the sound pressure distribution pattern at the entrance of the ear canal carried the sound source direction information and could be used as an unrevealed localization clue. The frequency bands in which the sound pressure distribution patterns had significant differences between front and back sound source directions were roughly matched with the effective frequency bands of unrevealed localization clues obtained from the listening tests. To some extent, it supports the hypothesis that the sound pressure distribution pattern could be a kind of unrevealed auditory localization clues.

The numerical quadrature methods for dealing with the problems of singular and near-singular integrals caused by Burton-Miller method are proposed,by which the conventional and fast multipole BEMs(boundary element methods) for 3D acoustic problems based on constant elements are improved.To solve the problem of singular integrals,a Hadamard finite-part integral method is presented,which is a simplified combination of the methods proposed by Kirkup and Wolf.The problem of near-singular integrals is overcome by the simple method of polar transformation and the more complex method of PART(Projection and Angular & Radial Transformation).The effectiveness of these methods for solving the singular and near-singular problems is validated through comparing with the results computed by the analytical method and/or the commercial software LMS Virtual.Lab.In addition,the influence of the near-singular integral problem on the computational precisions is analyzed by computing the errors relative to the exact solution.The computational complexities of the conventional and fast multipole BEM are analyzed and compared through numerical computations.A large-scale acoustic scattering problem,whose degree of freedoms is about 340,000,is implemented successfully.The results show that,the near singularity is primarily introduced by the hyper-singular kernel,and has great influences on the precision of the solution.The precision of fast multipole BEM is the same as conventional BEM,but the computational complexities are much lower.

Considering the filter properties of the long horizontal line array(HLA) to the sound field modes,we established an adaptive optimal method to design HLA weights,which can change the filter pass band with the frequency.Using the normal modes theory and combining with the feature of the sound field HLA beamformer,and analyzing the differences of definition and slope in the LOFAR(Low Frequency Analysis Recording) spectrogram between the single-hydrophone and the beamformer,a frequency-adapted optimal-weighted(FAOW)estimate method was obtained by solving a quadratic optimization model with linear equality constraints.The numerical simulation and the experimental data analysis indicated that we can obtain the beamformer signal with the designed optimal array weight which was made up by the Surface-Reflected Bottom-Reflected modes or Non-Surface-Reflected Bottom-Reflected modes.The slope of striations in the signal spectrogram fitted well with the theoretical analysis.

To explore a more convenient method for measuring the focused ultrasound power,a piezoelectric ceramic plate was used to receive ultrasonic signal directly.Due to an acoustic force acts on the surface of piezoelectric ceramic plate,the piezoelectric response was obtained by means of electromechanical analogy,which was composed of voltage response caused by forced vibration and high frequency attenuation response caused by natural vibration.The conversion relationship between output signal of piezoelectric ceramic plate and acoustic power of transducer was analyzed.The envelope of output piezoelectric signal was extracted in twice,and a voltage amplitude curve with sinusoidal distribution that could describe the changes of acoustic power was obtained.Under different drive voltage of transducer,the maximum peak voltage of envelope curve was found respectively.Their squared values were made a linear fitting with acoustic power measured by acoustic power meter,and then the proportional coefficient of theoretical relational expression was calibrated.The experimental results are in good agreement with the theory.The relative error between calibrated theoretical acoustic power and that measured by acoustic power meter was less than 8.7%.The paper can provide a guideline for measuring acoustic power of transducer by using piezoelectric signal.

Coded excitation technology （CET） can effectively enhance the penetration and resolution of ultrasonic testing. To analyze the influence of rock properties on pulse compression performance （PCP） of coded excitation signals （CES）, a numerical simulation, and an ultrasonic experiment on different rock samples are performed; and the detection ability of several CESs are also investigated and compared. The results of experiments showed that the loss of the signal-to-noise ratio （SNR） of Barker coded signal with tapered linear frequency modulated carrier （BTLFM） is always less than Barker coded signal with sine carrier （BS）, while the resolution loss of BTLFM is lower than tapered linear frequency modulated signal （TLFM）. In sum, the results not only verifiy the effectiveness of CET, but also provide a basis for the parameter settings of coded signals used in rock ultrasonic testing.

The research of propagation characteristics of air-to-water sound transmission is of great importance to the detection of aerial targets from underwater.In order to study the propagation characteristics of air-to-water sound transmission in shallow water,State Key Laboratory of Acoustics,Institute of Acoustics,conducted an experiment in the South China Sea in March,2013.During the experiment,multi-frequency signals transmitted by a hooter hung on a research ship were received by an underwater hydrophone,and the distance between the hooter and the hydrophone was from 2.4 km to 9.8 km approximately.Through analyzing experimental data in this work,the experimental air-to-water transmission loss at frequencies128 Hz and 256 Hz is estimated up to 9.8 km in range,and its oscillation structure is evident.The wave-number integration approach is used to simulate theoretical air-to-water transmission losses,which are in good agreement with experimental values and to explain the experimental air-to-water sound transmission characteristics.

To explore a more convenient method for measuring the focused ultrasound power, a piezoelectric ceramic plate was used to receive ultrasonic signal directly. Due to an acoustic force acts on the surface of piezoelectric ceramic plate, the piezoelectric response was obtained by means of electromechanical analogy, which was composed of voltage response caused by forced vibration and high frequency attenuation response caused by natural vibration. The conversion relationship between output signal of piezoelectric ceramic plate and acoustic power of transducer was analyzed. The envelope of output piezoelectric signal was extracted in twice, and a voltage amplitude curve with sinusoidal distribution that could describe the changes of acoustic power was obtained. Under different drive voltage of transducer, the maximum peak voltage of envelope curve was found respectively. Their squared values were made a linear fitting with acoustic power measured by acoustic power meter, and then the proportional coefficient of theoretical relational expression was calibrated. The experimental results are in good agreement with the theory. The relative error between calibrated theoretical acoustic power and that measured by acoustic power meter was less than 8.7%. The paper can provide a guideline for measuring acoustic power of transducer by using piezoelectric signal.

To solve the problem of corrosion acoustic emission （AE） source feature extraction and recognition, the AE detection validation and the amplitude-frequency characteristics were derived in theory. The amplitude of AE signal generated by bubble burst is proportional to its radius square and the liquid level, while the AE signal frequency is inversely proportional to the bubble radius. The AE signal amplitude of the steel and the steel corrosion product cracking is proportional to the local stress, and the AE signal frequency is proportional to the crack propagation velocity and inversely proportional to the crack propagation distance. Three Q235 specimens were separately immersed in the solution of 10% FeC13.6H20, 5% CuSOa.5H20 and 10% FeC13.6H20 with 0.01 mol/L HCL. The AE systems with high frequency and low frequency were used to detect the whole corrosion process AE signals. The AE signals of Q235 steel and the steel corrosion products cracking were detected as the verification experiment. The AE signals from different sources could be distinguished by AE hits count and the power spectrum. It is coincident with theoretical analysis. These conclusions have significant guidance for the corrosion detection and evaluation by on-line acoustic emission detecting.

A method based on syntactic pattern recognition was presented to automatically classify whistles of bottlenose dolphin. Dolphin whistles have typically been characterized in terms of their instantaneous frequency as a function of time, which is also known as ＂whistle contour＂. The frequency variation features of a whistle were extracted according to its contour. Then, the frequency variation features were used for learning grammatical patterns. A whistle was classified according to grammatical pattern of its frequency variation features. The exper- imental results showed that the classification accuracy of the proposed method was 95%. The method can provide technical support for acoustic study of dolphins＇ biological behavior.

To solve the problem of corrosion acoustic emission（AE） source feature extraction and recognition,the AE detection validation and the amplitude-frequency characteristics were derived in theory.The amplitude of AE signal generated by bubble burst is proportional to its radius square and the liquid level,while the AE signal frequency is inversely proportional to the bubble radius.The AE signal amplitude of the steel and the steel corrosion product cracking is proportional to the local stress,and the AE signal frequency is proportional to the crack propagation velocity and inversely proportional to the crack propagation distance.Three Q235 specimens were separately immersed in the solution of 10%FeCl3·6H2O,5%CuSO4·5H2O and10%FeCl3·6H2O with 0.01 mol/L HCL.The AE systems with high frequency and low frequency were used to detect the whole corrosion process AE signals.The AE signals of Q235 steel and the steel corrosion products cracking were detected as the verification experiment.The AE signals from different sources could be distinguished by AE hits count and the power spectrum.It is coincident with theoretical analysis.These conclusions have significant guidance for the corrosion detection and evaluation by on-line acoustic emission detecting.

In order to simplify the process which aims at separating the coherent sources located at different sides of holography surface, a direct sound field separation method which only depends on the data of holography surface is proposed. Assume that the reconstruction surface is holography surface, according to the equivalent sources located at the spherical surface, there exists a relationship between the measured sound pressure and the calculated value based on equivalent source method. Then, the coherent sources are separated. Nmnerical simulation an- alyzes the separation results when the interference sources are pulsating ball source and simply supported steel sheet with forced oscillation, respectively. The separation method is validated by experiment with two loudspeakers. The results show that the proposed method has high accuracy to the two kinds of interference sources and high tolerate deviation.

The numerical quadrature methods for dealing with the problems of singular and near-singular integrals caused by Burton-Miller method are proposed, by which the conventional and fast multipole BEMs （boundary element methods） for 3D acoustic problems based on constant elements are improved. To solve the problem of singular integrals, a Hadamard finite-part integral method is presented, which is a simplified combination of the methods proposed by Kirkup and Wolf. The problem of near-singular integrals is overcome by the simple method of polar transformation and the more complex method of PART （Projection and Angular ＆ Radial Transformation）. The effectiveness of these methods for solving the singular and near-singular problems is validated through comparing with the results computed by the analytical method and/or the commercial software LMS Virtual.Lab. In addition, the influence of the near-singular integral problem on the computational precisions is analyzed by computing the errors relative to the exact solution. The computational complexities of the conventional and fast multipole BEM are analyzed and compared through numerical computations. A large-scale acoustic scattering problem, whose degree of freedoms is about 340,000, is implemented successfully. The results show that, the near singularity is primarily introduced by the hyper-singular kernel, and has great influences on the precision of the solution. The precision of fast multipole BEM is the same as conventional BEM, but the computational complexities are much lower.