The field of cavity optomechanics is reviewed. This field explores the interaction between electromagnetic radiation and nanomechanical or micromechanical motion. This review covers the basics of optical cavities and mechanical resonators, their mutual optomechanical interaction mediated by the radiation-pressure force, the large variety of experimental systems which exhibit this interaction, optical measurements of mechanical motion, dynamical backaction amplification and cooling, nonlinear dynamics, multimode optomechanics, and proposals for future cavity-quantum-optomechanics experiments. In addition, the perspectives for fundamental quantum physics and for possible applications of optomechanical devices are described.

Spin Hall effects are a collection of relativistic spin-orbit coupling phenomena in which electrical currents can generate transverse spin currents and vice versa. Despite being observed only a decade ago, these effects are already ubiquitous within spintronics, as standard spin-current generators and detectors. Here the theoretical and experimental results that have established this subfield of spintronics are reviewed. The focus is on the results that have converged to give us the current understanding of the phenomena, which has evolved from a qualitative to a more quantitative measurement of spin currents and their associated spin accumulation. Within the experimental framework, optical-, transport-, and magnetization-dynamics-based measurements are reviewed and linked to both phenomenological and microscopic theories of the effect. Within the theoretical framework, the basic mechanisms in both the extrinsic and intrinsic regimes are reviewed, which are linked to the mechanisms present in their closely related phenomenon in ferromagnets, the anomalous Hall effect. Also reviewed is the connection to the phenomenological treatment based on spin-diffusion equations applicable to certain regimes, as well as the spin-pumping theory of spin generation used in many measurements of the spin Hall angle. A further connection to the spin-current-generating spin Hall effect to the inverse spin galvanic effect is given, in which an electrical current induces a nonequilibrium spin polarization. This effect often accompanies the spin Hall effect since they share common microscopic origins. Both can exhibit the same symmetries when present in structures comprising ferromagnetic and nonmagnetic layers through their induced current-driven spin torques or induced voltages. Although a short chronological overview of the evolution of the spin Hall effect field and the resolution of some early controversies is given, the main body of this review is structured from a pedagogical point of view, focusing on well-established and accepted physics. In such a young field, there remains much to be understood and explored, hence some of the future challenges and opportunities of this rapidly evolving area of spintronics are outlined.

In recent years the research community has accumulated overwhelming evidence for the emergence of complex and heterogeneous connectivity patterns in a wide range of biological and sociotechnical systems. The complex properties of real-world networks have a profound impact on the behavior of equilibrium and nonequilibrium phenomena occurring in various systems, and the study of epidemic spreading is central to our understanding of the unfolding of dynamical processes in complex networks. The theoretical analysis of epidemic spreading in heterogeneous networks requires the development of novel analytical frameworks, and it has produced results of conceptual and practical relevance. A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear. Physicists, mathematicians, epidemiologists, computer, and social scientists share a common interest in studying epidemic spreading and rely on similar models for the description of the diffusion of pathogens, knowledge, and innovation. For this reason, while focusing on the main results and the paradigmatic models in infectious disease modeling, the major results concerning generalized social contagion processes are also presented. Finally, the research activity at the forefront in the study of epidemic spreading in coevolving, coupled, and time-varying networks is reported.

Differently from passive Brownian particles, active particles, also known as self-propelled Brownian particles or microswimmers and nanoswimmers, are capable of taking up energy from their environment and converting it into directed motion. Because of this constant flow of energy, their behavior can be explained and understood only within the framework of nonequilibrium physics. In the biological realm, many cells perform directed motion, for example, as a way to browse for nutrients or to avoid toxins. Inspired by these motile microorganisms, researchers have been developing artificial particles that feature similar swimming behaviors based on different mechanisms. These man-made micromachines and nanomachines hold a great potential as autonomous agents for health care, sustainability, and security applications. With a focus on the basic physical features of the interactions of self-propelled Brownian particles with a crowded and complex environment, this comprehensive review will provide a guided tour through its basic principles, the development of artificial self-propelling microparticles and nanoparticles, and their application to the study of nonequilibrium phenomena, as well as the open challenges that the field is currently facing.

Topological materials have become the focus of intense research in recent years, since they exhibit fundamentally new physical phenomena with potential applications for novel devices and quantum information technology. One of the hallmarks of topological materials is the existence of protected gapless surface states, which arise due to a nontrivial topology of the bulk wave functions. This review provides a pedagogical introduction into the field of topological quantum matter with an emphasis on classification schemes. Both fully gapped and gapless topological materials and their classification in terms of nonspatial symmetries, such as time reversal, as well as spatial symmetries, such as reflection, are considered. Furthermore, the classification of gapless modes localized on topological defects is surveyed. The classification of these systems is discussed by use of homotopy groups, Clifford algebras, K theory, and nonlinear sigma models describing the Anderson (de) localization at the surface or inside a defect of the material. Theoretical model systems and their topological invariants are reviewed together with recent experimental results in order to provide a unified and comprehensive perspective of the field. While the bulk of this article is concerned with the topological properties of noninteracting or mean-field Hamiltonians, a brief overview of recent results and open questions concerning the topological classifications of interacting systems is also provided.

This review summarizes theoretical progress in the field of active matter, placing it in the context of recent experiments. This approach offers a unified framework for the mechanical and statistical properties of living matter: biofilaments and molecular motors in vitro or in vivo, collections of motile microorganisms, animal flocks, and chemical or mechanical imitations. A major goal of this review is to integrate several approaches proposed in the literature, from semimicroscopic to phenomenological. In particular, first considered are "dry" systems, defined as those where momentum is not conserved due to friction with a substrate or an embedding porous medium. The differences and similarities between two types of orientationally ordered states, the nematic and the polar, are clarified. Next, the active hydrodynamics of suspensions or "wet" systems is discussed and the relation with and difference from the dry case, as well as various large-scale instabilities of these nonequilibrium states of matter, are highlighted. Further highlighted are various large-scale instabilities of these nonequilibrium states of matter. Various semimicroscopic derivations of the continuum theory are discussed and connected, highlighting the unifying and generic nature of the continuum model. Throughout the review, the experimental relevance of these theories for describing bacterial swarms and suspensions, the cytoskeleton of living cells, and vibrated granular material is discussed. Promising extensions toward greater realism in specific contexts from cell biology to animal behavior are suggested, and remarks are given on some exotic active-matter analogs. Last, the outlook for a quantitative understanding of active matter, through the interplay of detailed theory with controlled experiments on simplified systems, with living or artificial constituents, is summarized.

Weyl and Dirac semimetals are three-dimensional phases of matter with gapless electronic excitations that are protected by topology and symmetry. As three-dimensional analogs of graphene, they have generated much recent interest. Deep connections exist with particle physics models of relativistic chiral fermions, and, despite their gaplessness, to solid-state topological and Chern insulators. Their characteristic electronic properties lead to protected surface states and novel responses to applied electric and magnetic fields. The theoretical foundations of these phases, their proposed realizations in solid-state systems, and recent experiments on candidate materials as well as their relation to other states of matter are reviewed.

Bell's 1964 theorem, which states that the predictions of quantum theory cannot be accounted for by any local theory, represents one of the most profound developments in the foundations of physics. In the last two decades, Bell's theorem has been a central theme of research from a variety of perspectives, mainly motivated by quantum information science, where the nonlocality of quantum theory underpins many of the advantages afforded by a quantum processing of information. The focus of this review is to a large extent oriented by these later developments. The main concepts and tools which have been developed to describe and study the nonlocality of quantum theory and which have raised this topic to the status of a full subfield of quantum information science are reviewed.

Point defects and impurities strongly affect the physical properties of materials and have a decisive impact on their performance in applications. First-principles calculations have emerged as a powerful approach that complements experiments and can serve as a predictive tool in the identification and characterization of defects. The theoretical modeling of point defects in crystalline materials by means of electronic-structure calculations, with an emphasis on approaches based on density functional theory (DFT), is reviewed. A general thermodynamic formalism is laid down to investigate the physical properties of point defects independent of the materials class (semiconductors, insulators, and metals), indicating how the relevant thermodynamic quantities, such as formation energy, entropy, and excess volume, can be obtained from electronic structure calculations. Practical aspects such as the supercell approach and efficient strategies to extrapolate to the isolated-defect or dilute limit are discussed. Recent advances in tractable approximations to the exchange-correlation functional (DFT + U, hybrid functionals) and approaches beyond DFT are highlighted. These advances have largely removed the long-standing uncertainty of defect formation energies in semiconductors and insulators due to the failure of standard DFT to reproduce band gaps. Two case studies illustrate how such calculations provide new insight into the physics and role of point defects in real materials.

Topological insulators are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors. They are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time-reversal symmetry. These topological materials have been theoretically predicted and experimentally observed in a variety of systems, including HgTe quantum wells, BiSb alloys, and Bi2Te3 and Bi2Se3 crystals. Theoretical models, materials properties, and experimental results on two-dimensional and three-dimensional topological insulators are reviewed, and both the topological band theory and the topological field theory are discussed. Topological superconductors have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions. The theory of topological superconductors is reviewed, in close analogy to the theory of topological insulators.

Optical atomic clocks represent the state of the art in the frontier of modern measurement science. In this article a detailed review on the development of optical atomic clocks that are based on trapped single ions and many neutral atoms is provided. Important technical ingredients for optical clocks are discussed and measurement precision and systematic uncertainty associated with some of the best clocks to date are presented. An outlook on the exciting prospect for clock applications is given in conclusion.

This paper gives the 2014 self-consistent set of values of the constants and conversion factors of physics and chemistry recommended by the Committee on Data for Science and Technology (CODATA). These values are based on a least-squares adjustment that takes into account all data available up to 31 December 2014. Details of the data selection and methodology of the adjustment are described. The recommended values may also be found at physics.nist.gov/constants.

Simulating quantum mechanics is known to be a difficult computational problem, especially when dealing with large systems. However, this difficulty may be overcome by using some controllable quantum system to study another less controllable or accessible quantum system, i.e., quantum simulation. Quantum simulation promises to have applications in the study of many problems in, e.g., condensed-matter physics, high-energy physics, atomic physics, quantum chemistry, and cosmology. Quantum simulation could be implemented using quantum computers, but also with simpler, analog devices that would require less control, and therefore, would be easier to construct. A number of quantum systems such as neutral atoms, ions, polar molecules, electrons in semiconductors, superconducting circuits, nuclear spins, and photons have been proposed as quantum simulators. This review outlines the main theoretical and experimental aspects of quantum simulation and emphasizes some of the challenges and promises of this fast-growing field.

Photonic nanostructures provide a means of tailoring the interaction between light and matter and the past decade has witnessed tremendous experimental and theoretical progress on this subject. In particular, the combination with semiconductor quantum dots has proven successful. This manuscript reviews quantum optics with excitons in single quantum dots embedded in photonic nanostructures. The ability to engineer the light-matter interaction strength in integrated photonic nanostructures enables a range of fundamental quantum-electrodynamics experiments on, e.g., spontaneous-emission control, modified Lamb shifts, and enhanced dipole-dipole interaction. Furthermore, highly efficient single-photon sources and giant photon nonlinearities may be implemented with immediate applications for photonic quantum-information processing. This review summarizes the general theoretical framework of photon emission including the role of dephasing processes and applies it to photonic nanostructures of current interest, such as photonic-crystal cavities and waveguides, dielectric nanowires, and plasmonic waveguides. The introduced concepts are generally applicable in quantum nanophotonics and apply to a large extent also to other quantum emitters, such as molecules, nitrogen vacancy centers, or atoms. Finally, the progress and future prospects of applications in quantum-information processing are considered.

This article reviews recent theoretical and experimental advances in the fundamental understanding and active control of quantum fluids of light in nonlinear optical systems. In the presence of effective photon-photon interactions induced by the optical nonlinearity of the medium, a many-photon system can behave collectively as a quantum fluid with a number of novel features stemming from its intrinsically nonequilibrium nature. A rich variety of recently observed photon hydrodynamical effects is presented, from the superfluid flow around a defect at low speeds, to the appearance of a Mach-Cherenkov cone in a supersonic flow, to the hydrodynamic formation of topological excitations such as quantized vortices and dark solitons at the surface of large impenetrable obstacles. While the review is mostly focused on a specific class of semiconductor systems that have been extensively studied in recent years (planar semiconductor microcavities in the strong light-matter coupling regime having cavity polaritons as elementary excitations), the very concept of quantum fluids of light applies to a broad spectrum of systems, ranging from bulk nonlinear crystals, to atomic clouds embedded in optical fibers and cavities, to photonic crystal cavities, to superconducting quantum circuits based on Josephson junctions. The conclusive part of the article is devoted to a review of the future perspectives in the direction of strongly correlated photon gases and of artificial gauge fields for photons. In particular, several mechanisms to obtain efficient photon blockade are presented, together with their application to the generation of novel quantum phases. DOI: 10.1103/RevModPhys.85.299

Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but have protected conducting states on their edge or surface. These states are possible due to the combination of spin-orbit interactions and time-reversal symmetry. The two-dimensional (2D) topological insulator is a quantum spin Hall insulator, which is a close cousin of the integer quantum Hall state. A three-dimensional (3D) topological insulator supports novel spin-polarized 2D Dirac fermions on its surface. In this Colloquium the theoretical foundation for topological insulators and superconductors is reviewed and recent experiments are described in which the signatures of topological insulators have been observed. Transport experiments on HgTe/CdTe quantum wells are described that demonstrate the existence of the edge states predicted for the quantum spin Hall insulator. Experiments on Bi1-xSbx, Bi2Se3, Bi2Te3, and Sb2Te3 are then discussed that establish these materials as 3D topological insulators and directly probe the topology of their surface states. Exotic states are described that can occur at the surface of a 3D topological insulator due to an induced energy gap. A magnetic gap leads to a novel quantum Hall state that gives rise to a topological magnetoelectric effect. A superconducting energy gap leads to a state that supports Majorana fermions and may provide a new venue for realizing proposals for topological quantum computation. Prospects for observing these exotic states are also discussed, as well as other potential device applications of topological insulators.

One of the best signatures of nonclassicality in a quantum system is the existence of correlations that have no classical counterpart. Different methods for quantifying the quantum and classical parts of correlations are among the more actively studied topics of quantum-information theory over the past decade. Entanglement is the most prominent of these correlations, but in many cases unentangled states exhibit nonclassical behavior too. Thus distinguishing quantum correlations other than entanglement provides a better division between the quantum and classical worlds, especially when considering mixed states. Here different notions of classical and quantum correlations quantified by quantum discord and other related measures are reviewed. In the first half, the mathematical properties of the measures of quantum correlations are reviewed, related to each other, and the classical-quantum division that is common among them is discussed. In the second half, it is shown that the measures identify and quantify the deviation from classicality in various quantum-information-processing tasks, quantum thermodynamics, open-system dynamics, and many-body physics. It is shown that in many cases quantum correlations indicate an advantage of quantum methods over classical ones.American Physical Society

This paper gives the 2010 self-consistent set of values of the basic constants and conversion factors of physics and chemistry recommended by the Committee on Data for Science and Technology (CODATA) for international use. The 2010 adjustment takes into account the data considered in the 2006 adjustment as well as the data that became available from 1 January 2007, after the closing date of that adjustment, until 31 December 2010, the closing date of the new adjustment. Further, it describes in detail the adjustment of the values of the constants, including the selection of the final set of input data based on the results of least-squares analyses. The 2010 set replaces the previously recommended 2006 CODATA set and may also be found on the World Wide Web at physics.nist.gov/constants.

The science of quantum information has arisen over the last two decades centered on the manipulation of individual quanta of information, known as quantum bits or qubits. Quantum computers, quantum cryptography, and quantum teleportation are among the most celebrated ideas that have emerged from this new field. It was realized later on that using continuous-variable quantum information carriers, instead of qubits, constitutes an extremely powerful alternative approach to quantum information processing. This review focuses on continuous-variable quantum information processes that rely on any combination of Gaussian states, Gaussian operations, and Gaussian measurements. Interestingly, such a restriction to the Gaussian realm comes with various benefits, since on the theoretical side, simple analytical tools are available and, on the experimental side, optical components effecting Gaussian processes are readily available in the laboratory. Yet, Gaussian quantum information processing opens the way to a wide variety of tasks and applications, including quantum communication, quantum cryptography, quantum computation, quantum teleportation, and quantum state and channel discrimination. This review reports on the state of the art in this field, ranging from the basic theoretical tools and landmark experimental realizations to the most recent successful developments.