In this paper we introduce an exponential continuous-time GARCH(p, q) process. It is defined in such a way that it is a continuous-time extension of the discrete-time EGARCH(p, q) process. We investigate stationarity, mixing, and moment properties of the new model. An instantaneous leverage effect can be shown for the exponential continuous-time GARCH(p, p) model.

A Hawkes process is also known under the name of a self-exciting point process and has numerous applications throughout science and engineering. We derive the statistical estimation (maximum likelihood estimation) and goodness-of-fit (mainly graphical) for multivariate Hawkes processes with possibly dependent marks. As an application, we analyze two data sets from finance.

We consider basic ergodicity properties of adaptive Markov chain Monte Carlo algorithms under minimal assumptions, using coupling constructions. We prove convergence in distribution and a weak law of large numbers. We also give counterexamples to demonstrate that the assumptions we make are not redundant.

A sequence of random variables is said to be extended negatively dependent (END) if the tails of its finite-dimensional distributions in the lower-left and upper-right corners are dominated by a multiple of the tails of the corresponding finite-dimensional distributions of a sequence of independent random variables with the same marginal distributions. The goal of this paper is to establish the strong law of large numbers for a sequence of END and identically distributed random variables. In doing so we derive some new inequalities of large deviation type for the sums of END and identically distributed random variables being suitably truncated. We also show applications of our main result to risk theory and renewal theory.

We consider basic ergodicity properties of adaptive Markov chain Monte Carlo algorithms under minimal assumptions, using coupling constructions. We prove convergence in distribution and a weak law of large numbers. We also give counterexamples to demonstrate that the assumptions we make are not redundant.

A sequence of random variables is said to be extended negatively dependent (END) if the tails of its finite-dimensional distributions in the lower-left and upper-right corners are dominated by a multiple of the tails of the corresponding finite-dimensional distributions of a sequence of independent random variables with the same marginal distributions. The goal of this paper is to establish the strong law of large numbers for a sequence of END and identically distributed random variables. In doing so we derive some new inequalities of large deviation type for the sums of END and identically distributed random variables being suitably truncated. We also show applications of our main result to risk theory and renewal theory.

Let ${X_{{\lambda _1}}},{X_{{\lambda _2}}}, \cdots ,{X_{{\lambda _n}}}$ be independent Weibull random variables with ${X_{{\lambda _i}}} \sim W\left( {\alpha ,{\lambda _i}} \right),$ where λi > 0 for i = 1,..., n. Let $X_{n:n}^\lambda $ denote the lifetime of the parallel system formed from ${X_{{\lambda _1}}},{X_{{\lambda _2}}}, \cdots ,{X_{{\lambda _n}}}$. We investigate the effect of the changes in the scale parameters (λ₁, ..., ₁n) on the magnitude of $X_{n:n}^\lambda $ according to reverse hazard rate and likelihood ratio orderings.

In this paper we study the number of customers in infinite-server queues with a self-exciting (Hawkes) arrival process. Initially we assume that service requirements are exponentially distributed and that the Hawkes arrival process is of a Markovian nature. We obtain a system of differential equations that characterizes the joint distribution of the arrival intensity and the number of customers. Moreover, we provide a recursive procedure that explicitly identifies (transient and stationary) moments. Subsequently, we allow for non-Markovian Hawkes arrival processes and nonexponential service times. By viewing the Hawkes process as a branching process, we find that the probability generating function of the number of customers in the system can be expressed in terms of the solution of a fixed-point equation. We also include various asymptotic results: we derive the tail of the distribution of the number of customers for the case that the intensity jumps of the Hawkes process are heavy tailed, and we consider a heavy-traffic regime. We conclude by discussing how our results can be used computationally and by verifying the numerical results via simulations.

A continuous-time random walk is a simple random walk subordinated to a renewal process used in physics to model anomalous diffusion. In this paper we show that, when the time between renewals has infinite mean, the scaling limit is an operator Lévy motion subordinated to the hitting time process of a classical stable subordinator. Density functions for the limit process solve a fractional Cauchy problem, the generalization of a fractional partial differential equation for Hamiltonian chaos. We also establish a functional limit theorem for random walks with jumps in the strict generalized domain of attraction of a full operator stable law, which is of some independent interest.

For spectrally negative Levy risk processes we consider a general version of de Finetti's optimal dividend problem in which the ruin time is replaced with a general drawdown time from the running maximum in its value function. We identify a condition under which a barrier dividend strategy is optimal among all admissible strategies if the underlying process does not belong to a small class of compound Poisson processes with drift, for which the take-the-money-and-run dividend strategy is optimal. It generalizes the previous results on dividend optimization from ruin time based to drawdown time based. The associated drawdown functions are discussed in detail for examples of spectrally negative Levy processes.

An infinite convergent sum of independent and identically distributed random variables discounted by a multiplicative random walk is called perpetuity, because of a possible actuarial application. We provide three disjoint groups of sufficient conditions which ensure that the right tail of a perpetuity P{X > x} is asymptotic to ax(c)e(-bx) as x -> infinity for some a, b > 0, and c is an element of R. Our results complement those of Denisov and Zwart (2007). As an auxiliary tool we provide criteria for the finiteness of the one-sided exponential moments of perpetuities. We give several examples in which the distributions of perpetuities are explicitly identified.

A continuous-time random walk is a simple random walk subordinated to a renewal process used in physics to model anomalous diffusion. In this paper we show that, when the time between renewals has infinite mean, the scaling limit is an operator Lévy motion subordinated to the hitting time process of a classical stable subordinator. Density functions for the limit process solve a fractional Cauchy problem, the generalization of a fractional partial differential equation for Hamiltonian chaos. We also establish a functional limit theorem for random walks with jumps in the strict generalized domain of attraction of a full operator stable law, which is of some independent interest.

In this paper we propose a stochastic process, which is a Cox-Ingersoll-Ross process with Hawkes jumps. It can be seen as a generalization of the classical Cox-Ingersoll-Ross process and the classical Hawkes process with exponential exciting function. Our model is a special case of the affine point processes. We obtain Laplace transforms and limit theorems, including the law of large numbers, central limit theorems, and large deviations.

In extreme shock models, only the impact of the current, possibly fatal shock is usually taken into account, whereas in cumulative shock models, the impact of the preceding shocks is accumulated as well. A shock model which combines these two types is called a ‘combined shock model’. In this paper we study new classes of extreme shock models and, based on the obtained results and model interpretations, we extend these results to several specific combined shock models. For systems subject to nonhomogeneous Poisson processes of shocks, we derive the corresponding survival probabilities and discuss some meaningful interpretations and examples.

Using a new approach, for spectrally negative LEvy processes we find joint Laplace transforms involving the last exit time (from a semiinfinite interval), the value of the process at the last exit time, and the associated occupation time, which generalize some previous results.

Recently, Rao et al. (2004) introduced an alternative measure of uncertainty known as the cumulative residual entropy (CRE). It is based on the survival (reliability) function (F) over bar instead of the probability density function f used in classical Shannon entropy. In reliability based system design, the performance characteristics of the coherent systems are of great importance. Accordingly, in this paper, we study the CRE for coherent and mixed systems when the component lifetimes are identically distributed. Bounds for the CRE of the system lifetime are obtained. We use these results to propose a measure to study if a system is close to series and parallel systems of the same size. Our results suggest that the CRE can be viewed as an alternative entropy (dispersion) measure to classical Shannon entropy.

Let X be the constrained random walk on Z(+)(2) having increments (1, 0), (-1, 1), and (0, -1) with respective probabilities A lambda,mu 1, and mu 2 representing the lengths of two tandem queues. We assume that X is stable and mu 1 not equal mu 2. Let tau(n) be the first time when the sum of the components of X equals n. Let Y be the constrained random walk on Z x Z(+) having increments (-1, 0), (1, 1), and (0, -1) with probabilities lambda, mu(1), and mu(2). Let tau be the first time that the components of Y are equal to each other. We prove that Pn-xn(1),x(n)(2)(tau 0. An affine transformation moving the origin to the point (n, 0) and letting n -> infinity connect the X and Y processes. We use a linear combination of basis functions constructed from single and conjugate points on a characteristic surface associated with X to derive a simple expression for P-y (tau < infinity) in terms of the utilization rates of the nodes. The proof that the relative error decays exponentially in n uses a sequence of subsolutions of a related HamiltonJacobi-Bellman equation on a manifold consisting of three copies of R-+(2) glued to each other along the constraining boundaries. We indicate how the ideas of the paper can be generalized to more general processes and other exit boundaries.

We study a class of growing systems of random walks on regular trees, known as frog models with geometric lifetime in the literature. With the help of results from renewal theory, we derive new bounds for their critical parameters. Our approach also improves the existing bounds for the critical parameter of a percolation model on trees known as cone percolation.

We consider upper-lower (UL) (and lower-upper (LU)) factorizations of the one-step transition probability matrix of a random walk with the state space of nonnegative integers, with the condition that both upper and lower triangular matrices in the factorization are also stochastic matrices. We provide conditions on the free parameter of the UL factorization in terms of certain continued fractions such that this stochastic factorization is possible. By inverting the order of the factors (also known as a Darboux transformation) we obtain a new family of random walks where it is possible to state the spectral measures in terms of a Geronimus transformation. We repeat this for the LU factorization but without a free parameter. Finally, we apply our results in two examples; the random walk with constant transition probabilities, and the random walk generated by the Jacobi orthogonal polynomials. In both situations we obtain urn models associated with all the random walks in question.

We consider a Markov chain of point processes such that each state is a superposition of an independent cluster process with the previous state as its centre process together with some independent noise process and a thinned version of the previous state. The model extends earlier work by Felsenstein (1975) and Shimatani (2010) describing a reproducing population. We discuss when closed-form expressions of the first- and second-order moments are available for a given state. In a special case it is known that the pair correlation function for these type of point processes converges as the Markov chain progresses, but it has not been shown whether the Markov chain has an equilibrium distribution with this, particular, pair correlation function and how it may be constructed. Assuming the same reproducing system, we construct an equilibrium distribution by a coupling argument.