We consider the problem of motion of several rigid bodies in a viscous fluid. Both compressible and incompressible fluids are studied. In both cases, the existence of globally defined weak solutions is established regardless possible collisions of two or more rigid objects.

The Maxwell equations with uniformly monotone nonlinear electric conductivity in a heterogeneous medium, which may be non-periodic, are homogenized by two-scale convergence. We introduce a new set of function spaces appropriate for the nonlinear Maxwell system. New compactness results, of two-scale type, are proved for these function spaces. We prove existence of a unique solution for the heterogeneous system as well as for the homogenized system. We also prove that the solutions of the heterogeneous system converge weakly to the solution of the homogenized system. Furthermore, we prove corrector results, important for numerical implementations.

The subject of the paper is the derivation of error estimates for the combined finite volume-finite element method used for the numerical solution of nonstationary nonlinear convection-diffusion problems. Here we analyze the combination of barycentric finite volumes associated with sides of triangulation with the piecewise linear nonconforming Crouzeix-Raviart finite elements. Under some assumptions on the regularity of the exact solution, the L 2(L 2) and L 2(H 1) error estimates are established. At the end of the paper, some computational results are presented demonstrating the application of the method to the solution of viscous gas flow.

Numerical schemes are presented for a class of fourth order diffusion problems. These problems arise in lubrication theory for thin films of viscous fluids on surfaces. The equations being in general fourth order degenerate parabolic, additional singular terms of second order may occur to model effects of gravity, molecular interactions or thermocapillarity. Furthermore, we incorporate nonlinear surface tension terms. Finally, in the case of a thin film flow driven by a surface active agent (surfactant), the coupling of the thin film equation with an evolution equation for the surfactant density has to be considered. Discretizing the arising nonlinearities in a subtle way enables us to establish discrete counterparts of the essential integral estimates found in the continuous setting. As a consequence, the resulting algorithms are efficient, and results on convergence and nonnegativity or even strict positivity of discrete solutions follow in a natural way. The paper presents a finite element and a finite volume scheme and compares both approaches. Furthermore, an overview over qualitative properties of solutions is given, and various applications show the potential of the proposed approach.

Some rigorous results connected with the conventional statistical theory of turbulence in both the two- and three-dimensional cases are discussed. Such results are based on the concept of stationary statistical solution, related to the notion of ensemble average for turbulence in statistical equilibrium, and concern, in particular, the mean kinetic energy and enstrophy fluxes and their corresponding cascades. Some of the results are developed here in the case of nonsmooth boundaries and a less regular forcing term and for arbitrary stationary statistical solutions.

Most non-trivial existence and convergence results for systems of partial differential equations of evolution exclude or avoid the case of a non-symmetrical parabolic part. Therefore such systems, generated by the physical analysis of the processes of transfer of heat and moisture in porous media, cannot be analyzed easily using the standard results on the convergence of Rothe sequences (e.g. those of W. Jager and J. Kacur). In this paper the general variational formulation of the corresponding system is presented and its existence and convergence properties are verified; its application to one model problem (preserving the symmetry in the elliptic, but not in the parabolic part) is demonstrated.

We consider two quasistatic problems which describe the frictional contact between a deformable body and an obstacle, the so-called foundation. In the first problem the body is assumed to have a viscoelastic behavior, while in the other it is assumed to be elastic. The frictional contact is modeled by a general velocity dependent dissipation functional. We derive weak formulations for the models and prove existence and uniqueness results. The proofs are based on the theory of evolution variational inequalities and fixed-point arguments. We also prove that the solution of the viscoelastic problem converges to the solution of the corresponding elastic problem, as the viscosity tensor converges to zero. Finally, we describe a number of concrete contact and friction conditions to which our results apply.

A new point process is proposed which can be viewed either as a Boolean cluster model with two cluster modes or as a p-thinned Neyman-Scott cluster process with the retention of the original parent point. Voronoi tessellation generated by such a point process has extremely high coefficients of variation of cell volumes as well as of profile areas and lengths in the planar and line induced tessellations. An approximate numerical model of tessellation characteristics is developed for the case of small cluster size; its predictions are compared with the results of computer simulations. Tessellations of this type can be used as models of grain structures in steels.

The problem is to determine the optimum size of nonsensitiveness regions for the level of statistical tests. This is closely connected with the problem of the distribution of quadratic forms.

Linear conform transformation in the case of non-negligible errors in both coordinate systems is investigated. Estimation of transformation parameters and their statistical properties are described. Confidence ellipses of transformed nonidentical points and cross covariance matrices among them and identical points are determined. Some simulation for a verification of theoretical results are presented.

We consider a simplified one-dimensional thermal model of nuclear matter, described by a system of Navier-Stokes-Poisson type, with a non monotone equation of state due to an effective nuclear interaction. We prove the existence of globally defined (large) solutions of the corresponding free boundary problem, with an exterior pressure P which is not required to be positive, provided sufficient thermal dissipation is present. We give also a partial description of the asymptotic behaviour of the system, in the two cases P > 0 and P < 0.

This paper describes a modification of the kriging method for working with the square root transformation of a spatial random process. We have developed this method for the situation where the spatial process observed is not supposed to be stationary but the assumption is that its square root is a second order stationary spatial random process. Consequently this method is developed for estimating the integral of the process observed and finally some application of the method is given to data from an environmental radioactivity survey.

This note deals with contact shape optimization for problems involving “floating” structures. The boundedness of solutions to state problems with respect to admissible domains, which is the basic step in the existence analysis, is a consequence of Korn's inequality in coercive cases. In semicoercive cases (meaning that floating bodies are admitted), the Korn inequality cannot be directly applied and one has to proceed in another way: to use a decomposition of kinematically admissible functions and a Korn type inequality on appropriate subspaces. In addition, one has to show that the constant appearing in this inequality is independent with respect to a family of admissible domains.

Algorithms for finding an approximate solution of boundary value problems for systems of functional ordinary differential equations are studied. Sufficient conditions for consistency and convergence of these methods are given. In the last section, a construction of methods of arbitrary order is presented.

Natural cubic interpolatory splines are known to have a minimal L 2-norm of its second derivative on the C 2 (or W 2 2 ) class of interpolants. We consider cubic splines which minimize some other norms (or functionals) on the class of interpolatory cubic splines only. The cases of classical cubic splines with defect one (interpolation of function values) and of Hermite C 1 splines (interpolation of function values and first derivatives) with spline knots different from the points of interpolation are discussed.

The paper surveys some recent results on iterative aggregation/disaggregation methods (IAD) for computing stationary probability vectors of stochastic matrices and solutions of Leontev linear systems. A particular attention is paid to fast IAD methods.

In this paper we prove existence of periodic solutions to a nonlinear evolution system of second order partial differential equations involving the pseudo-Laplacian operator. To show the existence of periodic solutions we use Faedo-Galerkin method with a Schauder fixed point argument.

This paper concerns the composite grid finite element (FE) method for solving boundary value problems in the cases which require local grid refinement for enhancing the approximating properties of the corresponding FE space. A special interest is given to iterative methods based on natural decomposition of the space of unknowns and to the implementation of both the composite grid FEM and the iterative procedures for its solution. The implementation is important for gaining all benefits of the described methods. We also discuss the case of inexact subproblems, which can frequently arise in the course of hierarchical modelling.

We consider the steady plane flow of certain classes of viscoelastic fluids in exterior domains with a non-zero velocity prescribed at infinity. We study existence as well as asymptotic behaviour of solutions near infinity and show that for sufficiently small data the solution decays near infinity as fast as the fundamental solution to the Oseen problem.