This contribution presents the shape optimization problem of the plunger cooling cavity for the time dependent model of pressing the glass products. The system of the mould, the glass piece, the plunger and the plunger cavity is considered in four consecutive time intervals during which the plunger moves between 6 glass moulds.The state problem is represented by the steady-state Navier-Stokes equations in the cavity and the doubly periodic energy equation in the whole system, under the assumption of rotational symmetry, supplemented by suitable boundary conditions.The cost functional is defined as the squared weighted L 2 norm of the difference between a prescribed constant and the temperature of the plunger surface layer at the moment before separation of the plunger and the glass piece.The existence and uniqueness of the solution to the state problem and the existence of a solution to the optimization problem are proved.

We consider the implicit discretization of Nagumo equation on finite lattices and show that its variational formulation corresponds in various parameter settings to convex, mountain-pass or saddle-point geometries. Consequently, we are able to derive conditions under which the implicit discretization yields multiple solutions. Interestingly, for certain parameters we show nonuniqueness for arbitrarily small discretization steps. Finally, we provide a simple example showing that the nonuniqueness can lead to complex dynamics in which the number of bounded solutions grows exponentially in time iterations, which in turn implies infinite number of global trajectories.

The dynamics of an activator-inhibitor model with general cubic polynomial source is investigated. Without diffusion, we consider the existence, stability and bifurcations of equilibria by both eigenvalue analysis and numerical methods. For the reaction-diffusion system, a Lyapunov functional is proposed to declare the global stability of constant steady states, moreover, the condition related to the activator source leading to Turing instability is obtained in the paper. In addition, taking the production rate of the activator as the bifurcation parameter, we show the decisive effect of each part in the source term on the patterns and the evolutionary process among stripes, spots and mazes. Finally, it is illustrated that weakly linear coupling in the activator-inhibitor model can cause synchronous and anti-phase patterns.

A 0/1-simplex is the convex hull of n+1 affinely independent vertices of the unit n-cube I n . It is nonobtuse if none of its dihedral angles is obtuse, and acute if additionally none of them is right. Acute 0/1-simplices in I n can be represented by 0/1-matrices P of size n × n whose Gramians G = P ⊤ P have an inverse that is strictly diagonally dominant, with negative off-diagonal entries.In this paper, we will prove that the positive part D of the transposed inverse P −⊤ of P is doubly stochastic and has the same support as P. In fact, P has a fully indecomposable doubly stochastic pattern. The negative part C of P −⊤ is strictly row-substochastic and its support is complementary to that of D, showing that P −⊤ = D−C has no zero entries and has positive row sums. As a consequence, for each facet F of an acute 0/1-facet S there exists at most one other acute 0/1-simplex Ŝ in I n having F as a facet. We call Ŝ the acute neighbor of S at F.If P represents a 0/1-simplex that is merely nonobtuse, the inverse of G = P ⊤ P is only weakly diagonally dominant and has nonpositive off-diagonal entries. These matrices play an important role in finite element approximation of elliptic and parabolic problems, since they guarantee discrete maximum and comparison principles. Consequently, P −⊤ can have entries equal to zero. We show that its positive part D is still doubly stochastic, but its support may be strictly contained in the support of P. This allows P to have no doubly stochastic pattern and to be partly decomposable. In theory, this might cause a nonobtuse 0/1-simplex S to have several nonobtuse neighbors Ŝ at each of its facets.In this paper, we study nonobtuse 0/1-simplices S having a partly decomposable matrix representation P. We prove that if S has such a matrix representation, it also has a block diagonal matrix representation with at least two diagonal blocks. Moreover, all matrix representations of S will then be partly decomposable. This proves that the combinatorial property of having a fully indecomposable matrix representation with doubly stochastic pattern is a geometrical property of a subclass of nonobtuse 0/1-simplices, invariant under all n-cube symmetries. We will show that a nonobtuse simplex with partly decomposable matrix representation can be split in mutually orthogonal simplicial facets whose dimensions add up to n, and in which each facet has a fully indecomposable matrix representation. Using this insight, we are able to extend the one neighbor theorem for acute simplices to a larger class of nonobtuse simplices.

This paper introduces the notion of pairwise and coordinatewise negative dependence for random vectors in Hilbert spaces. Besides giving some classical inequalities, almost sure convergence and complete convergence theorems are established. Some limit theorems are extended to pairwise and coordinatewise negatively dependent random vectors taking values in Hilbert spaces. An illustrative example is also provided.

This paper is concerned with mathematical and numerical analysis of the system of radiative integral transfer equations. The existence and uniqueness of solution to the integral system is proved by establishing the boundedness of the radiative integral operators and proving the invertibility of the operator matrix associated with the system. A collocation-boundary element method is developed to discretize the differential-integral system. For the non-convex geometries, an element-subdivision algorithm is developed to handle the computation of the integrals containing the visibility factor. An efficient iterative algorithm is proposed to solve the nonlinear discrete system and its convergence is also established. Numerical experiment results are also presented to verify the effectiveness and accuracy of the proposed method and algorithm.

Unique solvability and stability analysis is conducted for a generalized particle method for a Poisson equation with a source term given in divergence form. The general- ized particle method is a numerical method for partial differential equations categorized into meshfree particle methods and generally indicates conventional particle methods such as smoothed particle hydrodynamics and moving particle semi-implicit methods. Unique solv- ability is derived for the generalized particle method for the Poisson equation by introducing a connectivity condition for particle distributions. Moreover, stability is obtained for the discretized Poisson equation by introducing discrete Sobolev norms and a semi-regularity condition of a family of discrete parameters.

We establish the existence of solutions for evolution equations in Hilbert spaces with anti-periodic boundary conditions. The energies associated to these evolution equations are quadratic forms. Our approach is based on application of the Schaefer fixed-point theorem combined with the continuity method.

The paper deals with two mathematical models of predator-prey type where a transmissible disease spreads among the predator species only. The proposed models are analyzed and compared in order to assess the influence of hidden and explicit alternative resource for predator. The analysis shows boundedness as well as local stability and transcritical bifurcations for equilibria of systems. Numerical simulations support our theoretical analysis.

In specific fields of research such as preservation of historical buildings, medical imaging, geophysics and others, it is of particular interest to perform only a non-intrusive boundary measurements. The idea is to obtain comprehensive information about the material properties inside the considered domain while keeping the test sample intact. This paper is focused on such problems, i.e. synthesizing a physical model of interest with a boundary inverse value technique. The forward model is represented here by time dependent heat equation with transport parameters that are subsequently identified using a modified Calderon problem which is numerically solved by a regularized Gauss-Newton method. The proposed model setup is computationally verified for various domains, loading conditions and material distributions.

The paper deals with formulation and numerical solution of problems of identification of material parameters for continuum mechanics problems in domains with heterogeneous microstructure. Due to a restricted number of measurements of quantities related to physical processes, we assume additional information about the microstructure geometry provided by CT scan or similar analysis. The inverse problems use output least squares cost functionals with values obtained from averages of state problem quantities over parts of the boundary and Tikhonov regularization. To include uncertainties in observed values, Bayesian inversion is also considered in order to obtain a statistical description of unknown material parameters from sampling provided by the Metropolis-Hastings algorithm accelerated by using the stochastic Galerkin method. The connection between Bayesian inversion and Tikhonov regularization and advantages of each approach are also discussed.

Recent developments in the field of stochastic mechanics and particularly regarding the stochastic finite element method allow to model uncertain behaviours for more complex engineering structures. In reliability analysis, polynomial chaos expansion is a useful tool because it helps to avoid thousands of time-consuming finite element model simulations for structures with uncertain parameters. The aim of this paper is to review and compare available techniques for both the construction of polynomial chaos and its use in computing failure probability. In particular, we compare results for the stochastic Galerkin method, stochastic collocation, and the regression method based on Latin hypercube sampling with predictions obtained by crude Monte Carlo sampling. As an illustrative engineering example, we consider a simple frame structure with uncertain parameters in loading and geometry with prescribed distributions defined by realistic histograms.

The finite element (FE) solution of geotechnical elasticity problems leads to the solution of a large system of linear equations. For solving the system, we use the preconditioned conjugate gradient (PCG) method with two-level additive Schwarz preconditioner. The preconditioning is realised in parallel. A coarse space is usually constructed using an aggregation technique. If the finite element spaces for coarse and fine problems on structural grids are fully compatible, relations between elements of matrices of the coarse and fine problems can be derived. By generalization of these formulae, we obtain an overlapping aggregation technique for the construction of a coarse space with smoothed basis functions. The numerical tests are presented at the end of the paper.

In specific fields of research such as preservation of historical buildings, medical imaging, geophysics and others, it is of particular interest to perform only a non-intrusive boundary measurements. The idea is to obtain comprehensive information about the material properties inside the considered domain while keeping the test sample intact. This paper is focused on such problems, i.e. synthesizing a physical model of interest with a boundary inverse value technique. The forward model is represented here by time dependent heat equation with transport parameters that are subsequently identified using a modified Calderón problem which is numerically solved by a regularized Gauss-Newton method. The proposed model setup is computationally verified for various domains, loading conditions and material distributions.

A variational two-level method in the class of methods with an aggressive coarsening and a massive polynomial smoothing is proposed. The method is a modification of the method of Section 5 of Tezaur, Vaněk (2018). Compared to that method, a significantly sharper estimate is proved while requiring only slightly more computational work.