National Science Library, Chinese Academy of Sciences
  登录 机构网站 ENGLISH
您当前的位置是:首页->详细浏览

期刊名称: Acta Numerica
Volume:23    Page:369-520
ISSN:0962-4929

Numerical methods for kinetic equations期刊论文

作者: Dimarco G Pareschi L
DOI:10.1017/S0962492914000063

服务链接:
页码: 369-520
被引频次: 85
出版者: CAMBRIDGE UNIV PRESS,Cambridge University Press,Cambridge University Press (CUP)
期刊名称: Acta Numerica
ISSN: 0962-4929
语言: English
摘要: In this survey we consider the development and mathematical analysis of numerical methods for kinetic partial differential equations. Kinetic equations represent a way of describing the time evolution of a system consisting of a large number of particles. Due to the high number of dimensions and their intrinsic physical properties, the construction of numerical methods represents a challenge and requires a careful balance between accuracy and computational complexity. Here we review the basic numerical techniques for dealing with such equations, including the case of semi-Lagrangian methods, discrete-velocity models and spectral methods. In addition we give an overview of the current state of the art of numerical methods for kinetic equations. This covers the derivation of fast algorithms, the notion of asymptotic-preserving methods and the construction of hybrid schemes.
相关主题: ASYMPTOTIC-PRESERVING SCHEMES, WEIGHTED PARTICLE METHOD, MATHEMATICS, NAVIER-STOKES EQUATIONS, RUNGE-KUTTA METHODS, DISCRETE-VELOCITY MODEL, WELL-BALANCED SCHEMES, SEMICONDUCTOR BOLTZMANN-EQUATION, DIFFUSIVE RELAXATION SCHEMES, HYPERBOLIC CONSERVATION-LAWS, SEMI-LAGRANGIAN SCHEMES, Lagrange multiplier, Numerical analysis, Kinetics, Mathematical analysis, Physical properties, Modeling and Simulation, Mathematics, Numerical Analysis, Computer Science,

相关文献推荐:

问图书管理员更多图书管理员

学科咨询馆员
学科馆员

电话:
邮件:
问图书馆员

图标说明

在线获取原文 原文传递 详细信息 图书在架状态 图书馆际互借 问图书馆员

常见问题

图书馆开放时间 图书馆位置 借阅要求 您在使用中发现的任何错误,都可以向我们 【报告错误】,非常感谢!

作者信息:×