National Science Library, Chinese Academy of Sciences
  登录 机构网站 ENGLISH
您当前的位置是:首页->详细浏览

期刊名称: Acta Numerica
Volume:20    Page:291-467
ISSN:0962-4929

Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs期刊论文

作者: Schwab Christoph Gittelson Claude Jeffrey
DOI:10.1017/S0962492911000055

服务链接:
页码: 291-467
出版者: Cambridge University Press
期刊名称: Acta Numerica
ISSN: 0962-4929
语言: English
摘要: Partial differential equations (PDEs) with random input data, such as random loadings and coefficients, are reformulated as parametric, deterministic PDEs on parameter spaces of high, possibly infinite dimension. Tensorized operator equations for spatial and temporal k-point correlation functions of their random solutions are derived. Parametric, deterministic PDEs for the laws of the random solutions are derived. Representations of the random solutions' laws on infinite-dimensional parameter spaces in terms of ‘generalized polynomial chaos’ (GPC) series are established. Recent results on the regularity of solutions of these parametric PDEs are presented. Convergence rates of best N-term approximations, for adaptive stochastic Galerkin and collocation discretizations of the parametric, deterministic PDEs, are established. Sparse tensor products of hierarchical (multi-level) discretizations in physical space (and time), and GPC expansions in parameter space, are shown to converge at rates which are independent of the dimension of the parameter space. A convergence analysis of multi-level Monte Carlo (MLMC) discretizations of PDEs with random coefficients is presented. Sufficient conditions on the random inputs for superiority of sparse tensor discretizations over MLMC discretizations are established for linear elliptic, parabolic and hyperbolic PDEs with random coefficients.
相关主题: Partial differential equations, Parameter estimation, Stochastic models,

相关文献推荐:

问图书管理员更多图书管理员

学科咨询馆员
学科馆员

电话:
邮件:
问图书馆员

图标说明

在线获取原文 原文传递 详细信息 图书在架状态 图书馆际互借 问图书馆员

常见问题

图书馆开放时间 图书馆位置 借阅要求 您在使用中发现的任何错误,都可以向我们 【报告错误】,非常感谢!

作者信息:×