National Science Library, Chinese Academy of Sciences
  登录 机构网站 ENGLISH
您当前的位置是:首页->详细浏览

期刊名称: Journal of Agricultural Science
Volume:154    Issue:5        Page:812-827
ISSN:0021-8596

Quantifying N2O emissions from intensive grassland production: The role of synthetic fertilizer type, application rate, timing and nitrification inhibitors期刊论文

作者: Bell M.J Cloy J.M Topp C.F.E Ball B.C Bagnall A
DOI:10.1017/S0021859615000945

服务链接:
页码: 812-827
被引频次: 12
出版者: CAMBRIDGE UNIV PRESS,Cambridge University Press
期刊名称: Journal of Agricultural Science
ISSN: 0021-8596
卷期: Volume:154    Issue:5
语言: English
摘要: Increasing recognition of the extent to which nitrous oxide (N2O) contributes to climate change has resulted in greater demand to improve quantification of N2O emissions, identify emission sources and suggest mitigation options. Agriculture is by far the largest source and grasslands, occupying c. 022 of European agricultural land, are a major land-use within this sector. The application of mineral fertilizers to optimize pasture yields is a major source of N2O and with increasing pressure to increase agricultural productivity, options to quantify and reduce emissions whilst maintaining sufficient grassland for a given intensity of production are required. Identification of the source and extent of emissions will help to improve reporting in national inventories, with the most common approach using the IPCC emission factor (EF) default, where 001 of added nitrogen fertilizer is assumed to be emitted directly as N2O. The current experiment aimed to establish the suitability of applying this EF to fertilized Scottish grasslands and to identify variation in the EF depending on the application rate of ammonium nitrate (AN). Mitigation options to reduce N2O emissions were also investigated, including the use of urea fertilizer in place of AN, addition of a nitrification inhibitor dicyandiamide (DCD) and application of AN in smaller, more frequent doses. Nitrous oxide emissions were measured from a cut grassland in south-west Scotland from March 2011 to March 2012. Grass yield was also measured to establish the impact of mitigation options on grass production, along with soil and environmental variables to improve understanding of the controls on N2O emissions. A monotonic increase in annual cumulative N2O emissions was observed with increasing AN application rate. Emission factors ranging from 106-134% were measured for AN application rates between 80 and 320 kg N/ha, with a mean of 119%. A lack of any significant difference between these EFs indicates that use of a uniform EF is suitable over these application rates. The mean EF of 119% exceeds the IPCC default 1%, suggesting that use of the default value may underestimate emissions of AN-fertilizer-induced N2O loss from Scottish grasslands. The increase in emissions beyond an application rate of 320 kg N/ha produced an EF of 174%, significantly different to that from lower application rates and much greater than the 1% default. An EF of 089% for urea fertilizer and 059% for urea with DCD suggests that N2O quantification using the IPCC default EF will overestimate emissions for grasslands where these fertilizers are applied. Large rainfall shortly after fertilizer application appears to be the main trigger for N2O emissions, thus applicability of the 1% EF could vary and depend on the weather conditions at the time of fertilizer application.
相关主题: SPRING BARLEY, VARIABILITY, IMPACT, DCD, TEMPERATURE, DICYANDIAMIDE, AGRICULTURE, MULTIDISCIPLINARY, AGRICULTURAL SOILS, N FERTILIZER, NITROUS-OXIDE EMISSIONS, NONLINEAR RESPONSE, Grasslands, Nitrous oxide, Greenhouse gases, Fertilizers,

相关文献推荐:

问图书管理员更多图书管理员

学科咨询馆员
学科馆员

电话:
邮件:
问图书馆员

图标说明

在线获取原文 原文传递 详细信息 图书在架状态 图书馆际互借 问图书馆员

常见问题

图书馆开放时间 图书馆位置 借阅要求 您在使用中发现的任何错误,都可以向我们 【报告错误】,非常感谢!

作者信息:×